login
A055245
Numerator sequence of mean length of certain stackings of n+1 squares on a double staircase.
1
1, 1, 5, 12, 28, 61, 127, 257, 507, 982, 1872, 3523, 6557, 12089, 22105, 40128, 72380, 129809, 231611, 411337, 727455, 1281578, 2249856, 3936935, 6868537, 11950033, 20737613, 35901300, 62014396, 106897669, 183905143, 315806321, 541372131
OFFSET
0,3
COMMENTS
Denominator sequence is A055244(n).
REFERENCES
L. Turban, Lattice animals on a staircase and Fibonacci numbers, J.Phys. A 33 (2000) 2587-2595.
FORMULA
G.f.: (1-2*x+2*x^2+2*x^3-3*x^4-x^5)/(1-x-x^2)^3. (from Turban reference eq.(3.11)).
a(n) = ((5*n^2+3*n-27)*F(n)+(19*n+25)*F(n+1))/25 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq.(3.12)).
a(0)=1, a(1)=1, a(2)=5, a(3)=12, a(4)=28, a(5)=61, a(n)=3*a(n-1)- 5*a(n-3)+ 3*a(n-5)+a(n-6). - Harvey P. Dale, Aug 24 2014
MAPLE
a:= n-> (Matrix([[1, -1, 0, 2, -9, 25]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [3, 0, -5, 0, 3, 1][i] else 0 fi)^(n))[1, 1]: seq(a(n), n=0..32); # Alois P. Heinz, Aug 05 2008
MATHEMATICA
CoefficientList[Series[(1-2x+2x^2+2x^3-3x^4-x^5)/(1-x-x^2)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 1, 5, 12, 28, 61}, 50] (* Harvey P. Dale, Aug 24 2014 *)
CROSSREFS
Sequence in context: A160807 A038376 A002767 * A196410 A000465 A283506
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 10 2000
STATUS
approved