login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038376
a(n) = (n-3)*A006918(n-2)/2 for n >= 2, with a(0) = a(1) = 0.
1
0, 0, 0, 0, 1, 5, 12, 28, 50, 90, 140, 220, 315, 455, 616, 840, 1092, 1428, 1800, 2280, 2805, 3465, 4180, 5060, 6006, 7150, 8372, 9828, 11375, 13195, 15120, 17360, 19720, 22440, 25296, 28560, 31977, 35853, 39900, 44460, 49210, 54530, 60060, 66220, 72611
OFFSET
0,6
REFERENCES
K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186 Theorem 6.11.
FORMULA
From Colin Barker, Nov 19 2016: (Start)
a(n) = (n^4-3*n^3-4*n^2+12*n)/48 for n even.
a(n) = (n^4-3*n^3-n^2+3*n)/48 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: x^4*(1+3*x) / ((1-x)^5 * (1+x)^3). (End)
a(n) = n*(n - 3)*(2*n^2 - 3*(-1)^n - 5)/96. - Paolo Xausa, Sep 17 2024 (derived from Bruno Berselli formula in A006918)
MATHEMATICA
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 0, 0, 1, 5, 12, 28}, 100]
(* or *)
A038376[n_] := n*(n - 3)*(2*n^2 - 3*(-1)^n - 5)/96;
Array[A038376, 100, 0] (* Paolo Xausa, Sep 16 2024 *)
PROG
(PARI) concat(vector(4), Vec(x^4*(1+3*x) / ((1-x)^5 * (1+x)^3) + O(x^100))) \\ Colin Barker, Nov 19 2016
CROSSREFS
Cf. A006918.
Sequence in context: A145768 A162778 A160807 * A002767 A055245 A196410
KEYWORD
nonn,easy
EXTENSIONS
Name corrected by Paolo Xausa, Sep 16 2024
STATUS
approved