OFFSET
0,6
REFERENCES
K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186 Theorem 6.11.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
FORMULA
From Colin Barker, Nov 19 2016: (Start)
a(n) = (n^4-3*n^3-4*n^2+12*n)/48 for n even.
a(n) = (n^4-3*n^3-n^2+3*n)/48 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: x^4*(1+3*x) / ((1-x)^5 * (1+x)^3). (End)
a(n) = n*(n - 3)*(2*n^2 - 3*(-1)^n - 5)/96. - Paolo Xausa, Sep 17 2024 (derived from Bruno Berselli formula in A006918)
MATHEMATICA
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 0, 0, 1, 5, 12, 28}, 100]
(* or *)
A038376[n_] := n*(n - 3)*(2*n^2 - 3*(-1)^n - 5)/96;
Array[A038376, 100, 0] (* Paolo Xausa, Sep 16 2024 *)
PROG
(PARI) concat(vector(4), Vec(x^4*(1+3*x) / ((1-x)^5 * (1+x)^3) + O(x^100))) \\ Colin Barker, Nov 19 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name corrected by Paolo Xausa, Sep 16 2024
STATUS
approved