login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)). 30
1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In the language of the Shapiro et al. reference (also given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-2*z)*(1-x*z/(1-z))).
Binomial transform of the all 1's triangle: as a Riordan array, it factors to give (1/(1-x),x/(1-x))(1/(1-x),x). Viewed as a number square read by antidiagonals, it has T(n,k) = Sum_{j=0..n} binomial(n+k,n-j) and is then the binomial transform of the Whitney square A004070. - Paul Barry, Feb 03 2005
Riordan array (1/(1-2x), x/(1-x)). Antidiagonal sums are A027934(n+1), n >= 0. - Paul Barry, Jan 30 2005; edited by Wolfdieter Lang, Jan 09 2015
Eigensequence of the triangle = A005493: (1, 3, 10, 37, 151, 674, ...); row sums of triangles A011971 and A159573. - Gary W. Adamson, Apr 16 2009
Read as a square array, this is the generalized Riordan array ( 1/(1 - 2*x), 1/(1 - x) ) as defined in the Bala link (p. 5), which factorizes as ( 1/(1 - x), x/(1 - x) )*( 1/(1 - x), x )*( 1, 1 + x ) = P*U*transpose(P), where P denotes Pascal's triangle, A007318, and U is the lower unit triangular array with 1's on or below the main diagonal. - Peter Bala, Jan 13 2016
LINKS
Jean-Luc Baril, Javier F. González, and José L. Ramírez, Last symbol distribution in pattern avoiding Catalan words, Univ. Bourgogne (France, 2022).
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Norman Lindquist and Gerard Sierksma, Extensions of set partitions, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
FORMULA
a(n, m) = A008949(n, n-m), if n > m >= 0.
a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n<m.
G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
a(n, m) = Sum_{j=0..n} binomial(n, m+j). - Paul Barry, Feb 03 2005
Inverse binomial transform (by columns) of A112626. - Ross La Haye, Dec 31 2006
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
From Peter Bala, Dec 23 2014: (Start)
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - Wolfdieter Lang, Jan 09 2015
T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - Peter Luschny, Oct 10 2019
T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - Peter Luschny, Oct 06 2023
EXAMPLE
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 3 1
3: 8 7 4 1
4: 16 15 11 5 1
5: 32 31 26 16 6 1
6: 64 63 57 42 22 7 1
7: 128 127 120 99 64 29 8 1
8: 256 255 247 219 163 93 37 9 1
9: 512 511 502 466 382 256 130 46 10 1
10: 1024 1023 1013 968 848 638 386 176 56 11 1
... Reformatted. - Wolfdieter Lang, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
1;
-2, 1;
2, -3, 1;
-2, 5, -4, 1;
2, -7, 9, -5, 1;
-2, 9, -16, 14, -6, 1;
2, -11, 25,- 30, 20, -7, 1;
-2, 13, -36, 55, -50, 27, -8, 1;
2, -15, 49, -91, 105, -77, 35, -9, 1;
-2, 17, -64, 140, -196, 182, -112, 44, -10, 1;
2, -19, 81, -204, 336, -378, 294, -156, 54, -11, 1;
...
which may be related to A029653. - R. J. Mathar, Mar 29 2013
From Peter Bala, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|4 3 1 ||0 2 1 ||0 0 1 |... = |4 5 1 |
|8 7 4 1 ||0 4 3 1 ||0 0 2 1 | |8 19 9 1 |
|... ||0 8 7 4 1 ||0 0 4 3 1| |... |
|... ||... ||... | | |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1 \ /1 \ /1 1 1 1 ...\ /1 1 1 1 ...\
|1 1 ||1 1 ||0 1 2 3 ... | |2 3 4 5 ... |
|1 2 1 ||1 1 1 ||0 0 1 3 ... | = |4 7 11 16 ... |
|1 3 3 1 ||1 1 1 1 ||0 0 0 1 ... | |8 15 26 42 ... |
|... ||... ||... | |... |
- Peter Bala, Jan 13 2016
MAPLE
T := (n, k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Oct 10 2019
MATHEMATICA
a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* Peter Luschny, Oct 06 2023 *)
PROG
(Haskell)
a055248 n k = a055248_tabl !! n !! k
a055248_row n = a055248_tabl !! n
a055248_tabl = map reverse a008949_tabl
-- Reinhard Zumkeller, Jun 20 2015
CROSSREFS
Column sequences: A000079 (powers of 2, m=0), A000225 (m=1), A000295 (m=2), A002662 (m=3), A002663 (m=4), A002664 (m=5), A035038 (m=6), A035039 (m=7), A035040 (m=8), A035041 (m=9), A035042 (m=10).
Row sums: A001792(n) = A055249(n, 0).
Alternating row sums: A011782.
Cf. A011971, A159573. - Gary W. Adamson, Apr 16 2009
Sequence in context: A134392 A048483 A276562 * A103316 A332389 A140069
KEYWORD
easy,nonn,tabl
AUTHOR
Wolfdieter Lang, May 26 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 06:18 EST 2023. Contains 367509 sequences. (Running on oeis4.)