login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112626
Triangle read by rows: T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
8
1, 3, 1, 9, 5, 1, 27, 19, 7, 1, 81, 65, 33, 9, 1, 243, 211, 131, 51, 11, 1, 729, 665, 473, 233, 73, 13, 1, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19171, 16867, 12259, 6883, 2851, 835, 163, 19, 1, 59049, 58025
OFFSET
0,2
COMMENTS
T(n, 0) = A000244(n), T(n, 1) = A001047(n), T(n, 2) = A066810(n).
Column 0 is the row sums of A038207 starting at column 0, column 1 is the row sums of A038207 starting at column 1 etc. etc. Helpful suggestions related to Riordan arrays given by Paul Barry.
Riordan array ( 1/(1 - 3*x), x/(1 - 2*x) ). Matrix inverse is a signed version of A209149. - Peter Bala, Jul 17 2013
T(n,k) is the number of strings of length n over an alphabet of 3 letters that contain a given string of length k as a subsequence. - Robert Israel, Jan 14 2020
FORMULA
T(n, k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
O.g.f. (by columns): x^k /((1-3*x)*(1-2*x)^k). - Frank Ruskey and class
T(n,k) = Sum_{j=k..n} binomial(n,j)*2^(n-j). - Ross La Haye, May 02 2006
Binomial transform (by columns) of A055248.
EXAMPLE
Triangle begins as:
1;
3, 1;
9, 5, 1;
27, 19, 7, 1;
81, 65, 33, 9, 1;
243, 211, 131, 51, 11, 1;
729, 665, 473, 233, 73, 13, 1...
MAPLE
seq(seq( add(binomial(n, j)*2^(n-j), j=k..n), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Flatten[Table[Sum[Binomial[n, k+m]*2^(n-k-m), {m, 0, n}], {n, 0, 10}, {k, 0, n}]]
PROG
(PARI) T(n, k) = sum(j=k, n, binomial(n, j)*2^(n-j)); \\ G. C. Greubel, Nov 18 2019
(Magma) [&+[Binomial(n, j)*2^(n-j): j in [k..n]]: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
(Sage) [[sum(binomial(n, j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> Binomial(n, j)*2^(n-j)) ))); # G. C. Greubel, Nov 18 2019
CROSSREFS
Row sums = n*3^(n-1) + 3^n = A006234(n+3) (Frank Ruskey and class).
Cf. A209149 (unsigned matrix inverse).
Sequence in context: A371746 A005533 A331257 * A050155 A270236 A140714
KEYWORD
nonn,tabl
AUTHOR
Ross La Haye, Dec 26 2005
EXTENSIONS
More terms from Ross La Haye, Dec 31 2006
STATUS
approved