login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112626 Array, T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j), read by rows. 8
1, 3, 1, 9, 5, 1, 27, 19, 7, 1, 81, 65, 33, 9, 1, 243, 211, 131, 51, 11, 1, 729, 665, 473, 233, 73, 13, 1, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19171, 16867, 12259, 6883, 2851, 835, 163, 19, 1, 59049, 58025 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

T(n, 0) = A000244(n), T(n, 1) = A001047(n), T(n, 2) = A066810(n).

Column 0 is the row sums of A038207 starting at column 0, column 1 is the row sums of A038207 starting at column 1 etc. etc. Helpful suggestions related to Riordan arrays given by Paul Barry.

Riordan array ( 1/(1 - 3*x), x/(1 - 2*x) ). Matrix inverse is a signed version of A209149. - Peter Bala, Jul 17 2013

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n, k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).

O.g.f. (by columns): x^k /((1-3*x)*(1-2*x)^k). - Frank Ruskey and class

T(n,k) = Sum_{j=k..n} binomial(n,j)*2^(n-j). - Ross La Haye, May 02 2006

Binomial transform (by columns) of A055248.

EXAMPLE

Triangle begins as:

    1;

    3,   1;

    9,   5,   1;

   27,  19,   7,   1;

   81,  65,  33,   9,  1;

  243, 211, 131,  51, 11,  1;

  729, 665, 473, 233, 73, 13, 1...

MAPLE

seq(seq( add(binomial(n, j)*2^(n-j), j=k..n), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019

MATHEMATICA

Flatten[Table[Sum[Binomial[n, k+m]*2^(n-k-m), {m, 0, n}], {n, 0, 10}, {k, 0, n}]]

PROG

(PARI) T(n, k) = sum(j=k, n, binomial(n, j)*2^(n-j)); \\ G. C. Greubel, Nov 18 2019

(MAGMA) [&+[Binomial(n, j)*2^(n-j): j in [k..n]]: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019

(Sage) [[sum(binomial(n, j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019

(GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> Binomial(n, j)*2^(n-j)) ))); # G. C. Greubel, Nov 18 2019

CROSSREFS

Row sums = n*3^(n-1) + 3^n = A006234(n+3) (Frank Ruskey and class).

Cf. A000244, A001047, A038207, A066810.

Cf. A209149 (unsigned matrix inverse).

Sequence in context: A091579 A136159 A005533 * A050155 A270236 A140714

Adjacent sequences:  A112623 A112624 A112625 * A112627 A112628 A112629

KEYWORD

nonn,tabl

AUTHOR

Ross La Haye, Dec 26 2005

EXTENSIONS

More terms from Ross La Haye, Dec 31 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 23:14 EST 2019. Contains 329974 sequences. (Running on oeis4.)