login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112623
If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = sum_{p|n} b(p,n)!.
3
0, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 3, 1, 2, 2, 24, 1, 3, 1, 3, 2, 2, 1, 7, 2, 2, 6, 3, 1, 3, 1, 120, 2, 2, 2, 4, 1, 2, 2, 7, 1, 3, 1, 3, 3, 2, 1, 25, 2, 3, 2, 3, 1, 7, 2, 7, 2, 2, 1, 4, 1, 2, 3, 720, 2, 3, 1, 3, 2, 3, 1, 8, 1, 2, 3, 3, 2, 3, 1, 25, 24, 2, 1, 4, 2, 2, 2, 7, 1, 4, 2, 3, 2, 2, 2, 121, 1, 3, 3, 4, 1
OFFSET
1,4
LINKS
EXAMPLE
45 = 3^2 * 5^1. So a(45) = 2! + 1! = 3.
MATHEMATICA
f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Plus @@ (fi!)]; Array[f, 101] (* Robert G. Wilson v, Dec 27 2005 *)
PROG
(PARI) A112623(n) = { my(f = factor(n)); my(s = 0); for (k=1, #f~, s = s + f[k, 2]!; ); s; } \\ Antti Karttunen, May 25 2017
CROSSREFS
Cf. A000142.
Sequence in context: A204992 A186726 A205405 * A130675 A319118 A163820
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 25 2005
EXTENSIONS
More terms from Robert G. Wilson v, Dec 27 2005
STATUS
approved