login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112621
If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = sum_{p|n} b(p,n)^b(p,n).
2
0, 1, 1, 4, 1, 2, 1, 27, 4, 2, 1, 5, 1, 2, 2, 256, 1, 5, 1, 5, 2, 2, 1, 28, 4, 2, 27, 5, 1, 3, 1, 3125, 2, 2, 2, 8, 1, 2, 2, 28, 1, 3, 1, 5, 5, 2, 1, 257, 4, 5, 2, 5, 1, 28, 2, 28, 2, 2, 1, 6, 1, 2, 5, 46656, 2, 3, 1, 5, 2, 3, 1, 31, 1, 2, 5, 5, 2, 3, 1, 257, 256, 2, 1, 6, 2, 2, 2, 28, 1, 6, 2, 5, 2, 2, 2, 3126, 1, 5, 5, 8, 1, 3, 1, 28, 3
OFFSET
1,4
COMMENTS
a(1) = 0 (empty sum). - Antti Karttunen, May 28 2017
LINKS
FORMULA
a(n) = 1 iff n is prime, a(n) = 2 iff n is a nonsquare semiprime (A006881). - Robert G. Wilson v, Dec 27 2005
EXAMPLE
45 = 3^2 * 5^1. So a(45) = 2^2 + 1^1 = 5.
MATHEMATICA
f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Plus @@ (fi^fi)]; Rest@Array[f, 92] (* Robert G. Wilson v *)
PROG
(PARI) A112621(n) = { my(f = factor(n), s = 0); for (k=1, #f~, s += (f[k, 2]^f[k, 2]); ); s; } \\ Antti Karttunen, May 28 2017
CROSSREFS
Sequence in context: A008476 A300657 A370120 * A081448 A322906 A106437
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 25 2005
EXTENSIONS
More terms from Robert G. Wilson v, Dec 27 2005
Term a(1) = 0 prepended, data section extended to 105 terms - Antti Karttunen, May 28 2017
STATUS
approved