login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = sum_{p|n} b(p,n)^b(p,n).
2

%I #14 May 28 2017 09:14:12

%S 0,1,1,4,1,2,1,27,4,2,1,5,1,2,2,256,1,5,1,5,2,2,1,28,4,2,27,5,1,3,1,

%T 3125,2,2,2,8,1,2,2,28,1,3,1,5,5,2,1,257,4,5,2,5,1,28,2,28,2,2,1,6,1,

%U 2,5,46656,2,3,1,5,2,3,1,31,1,2,5,5,2,3,1,257,256,2,1,6,2,2,2,28,1,6,2,5,2,2,2,3126,1,5,5,8,1,3,1,28,3

%N If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = sum_{p|n} b(p,n)^b(p,n).

%C a(1) = 0 (empty sum). - _Antti Karttunen_, May 28 2017

%H Antti Karttunen, <a href="/A112621/b112621.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 1 iff n is prime, a(n) = 2 iff n is a nonsquare semiprime (A006881). - _Robert G. Wilson v_, Dec 27 2005

%e 45 = 3^2 * 5^1. So a(45) = 2^2 + 1^1 = 5.

%t f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Plus @@ (fi^fi)]; Rest@Array[f, 92] (* _Robert G. Wilson v_ *)

%o (PARI) A112621(n) = { my(f = factor(n), s = 0); for (k=1, #f~, s += (f[k, 2]^f[k, 2]); ); s; } \\ _Antti Karttunen_, May 28 2017

%Y Cf. A112622, A112623.

%K nonn

%O 1,4

%A _Leroy Quet_, Dec 25 2005

%E More terms from _Robert G. Wilson v_, Dec 27 2005

%E Term a(1) = 0 prepended, data section extended to 105 terms - _Antti Karttunen_, May 28 2017