login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112624
If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = Product_{p|n} b(p,n)!.
11
1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 1, 24, 1, 2, 1, 2, 1, 1, 1, 6, 2, 1, 6, 2, 1, 1, 1, 120, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 24, 2, 2, 1, 2, 1, 6, 1, 6, 1, 1, 1, 2, 1, 1, 2, 720, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 2, 2, 1, 1, 1, 24, 24, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 120, 1, 2, 2, 4, 1
OFFSET
1,4
COMMENTS
The logarithm of the Dirichlet series with the reciprocals of this sequence as coefficients is the Dirichlet series with the characteristic function of primes A010051 as coefficients. - Mats Granvik, Apr 13 2011
FORMULA
From Antti Karttunen, May 29 2017: (Start)
a(1) = 1 and for n > 1, a(n) = A000142(A067029(n)) * a(A028234(n)).
a(n) = A246660(A156552(n)). (End)
From Mats Granvik, Mar 05 2019: (Start)
log(a(n)) = inverse Möbius transform of log(A306694(n)).
log(a(n)) = Sum_{k=1..n} [k|n]*log(A306694(n/k))*A000012(k). (End)
From Amiram Eldar, Mar 08 2024: (Start)
Let f(n) = 1/a(n). Formulas from Jakimczuk (2024, pp. 12-15):
Dirichlet g.f. of f(n): Sum_{n>=1} f(n)/n^s = exp(P(s)), where P(s) is the prime zeta function.
Sum_{k=1..n} f(k) = c * n + o(n), where c = A240953.
Sum_{k=1..n} f(k)/k = c * log(n) + o(log(n)), where c = A240953. (End)
EXAMPLE
45 = 3^2 * 5^1. So a(45) = 2! * 1! = 2.
MAPLE
w := n -> op(2, ifactors(n)): a := n -> mul(factorial(w(n)[j][2]), j = 1..nops(w(n))): seq(a(n), n = 1..101); # Emeric Deutsch, May 17 2012
MATHEMATICA
f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Times @@ (fi!)]; Array[f, 101] (* Robert G. Wilson v, Dec 27 2005 *)
PROG
(PARI) A112624(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= f[k, 2]!; ); m; } \\ Antti Karttunen, May 28 2017
(Sage)
def A112624(n):
return mul(factorial(s[1]) for s in factor(n))
[A112624(i) for i in (1..101)] # Peter Luschny, Jun 15 2013
(Scheme) (define (A112624 n) (if (= 1 n) n (* (A000142 (A067029 n)) (A112624 (A028234 n))))) ;; Antti Karttunen, May 29 2017
CROSSREFS
For row > 1: a(n) = row products of A100995(A126988), when neglecting zero elements.
Sequence in context: A129110 A331562 A257101 * A294875 A293902 A300830
KEYWORD
nonn,easy,mult
AUTHOR
Leroy Quet, Dec 25 2005
EXTENSIONS
More terms from Robert G. Wilson v, Dec 27 2005
STATUS
approved