login
A246660
Run Length Transform of factorials.
16
1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 24, 1, 1, 1, 2, 1, 1, 2, 6, 2, 2, 2, 4, 6, 6, 24, 120, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 24, 2, 2, 2, 4, 2, 2, 4, 12, 6, 6, 6, 12, 24, 24, 120, 720, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 24, 1, 1, 1
OFFSET
0,4
COMMENTS
For the definition of the Run Length Transform see A246595.
Only Jordan-Polya numbers (A001013) are terms of this sequence.
FORMULA
a(2^n-1) = n!.
a(0) = 1, a(2n) = a(n), a(2n+1) = a(n) * A007814(2n+2). - Antti Karttunen, Sep 08 2014
a(n) = A112624(A005940(1+n)). - Antti Karttunen, May 29 2017
a(n) = A323505(n) / A323506(n). - Antti Karttunen, Jan 17 2019
MATHEMATICA
Table[Times @@ (Length[#]!&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 83}] (* Jean-François Alcover, Jul 11 2017 *)
PROG
(Sage)
def RLT(f, size):
L = lambda n: [a for a in Integer(n).binary().split('0') if a != '']
return [mul([f(len(d)) for d in L(n)]) for n in range(size)]
A246660_list = lambda len: RLT(factorial, len)
A246660_list(88)
(PARI)
A246660(n) = { my(i=0, p=1); while(n>0, if(n%2, i++; p = p * i, i = 0); n = n\2); p; };
for(n=0, 8192, write("b246660.txt", n, " ", A246660(n)));
\\ Antti Karttunen, Sep 08 2014
(Scheme)
;; A stand-alone loop version, like the Pari-program above:
(define (A246660 n) (let loop ((n n) (i 0) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ i 1) (* p (+ 1 i)))) (else (loop (/ n 2) 0 p)))))
;; One based on given recurrence, utilizing memoizing definec-macro from my IntSeq-library:
(definec (A246660 n) (cond ((zero? n) 1) ((even? n) (A246660 (/ n 2))) (else (* (A007814 (+ n 1)) (A246660 (/ (- n 1) 2))))))
;; Yet another implementation, using fold:
(define (A246660 n) (fold-left (lambda (a r) (* a (A000142 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
(definec (A000142 n) (if (zero? n) 1 (* n (A000142 (- n 1)))))
;; Other functions are as in A227349 - Antti Karttunen, Sep 08 2014
(Python)
from operator import mul
from functools import reduce
from re import split
from math import factorial
def A246660(n):
return reduce(mul, (factorial(len(d)) for d in split('0+', bin(n)[2:]) if d)) if n > 0 else 1 # Chai Wah Wu, Sep 09 2014
CROSSREFS
Cf. A003714 (gives the positions of ones).
Run Length Transforms of other sequences: A001316, A071053, A227349, A246588, A246595, A246596, A246661, A246674.
Sequence in context: A356696 A163982 A246661 * A346422 A245405 A233543
KEYWORD
nonn,base
AUTHOR
Peter Luschny, Sep 07 2014
STATUS
approved