login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246658 Triangle read by rows: T(n,k) = K(n,1)*I(k,1) - (-1)^(n+k)*I(n,1)* K(k,1), where I(n,x) and K(n,x) are Bessel functions; 0<=k<=n. 1
0, 1, 0, 2, 1, 0, 9, 4, 1, 0, 56, 25, 6, 1, 0, 457, 204, 49, 8, 1, 0, 4626, 2065, 496, 81, 10, 1, 0, 55969, 24984, 6001, 980, 121, 12, 1, 0, 788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0, 12667041, 5654440, 1358161, 221796, 27385, 2716, 225, 16, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..54.

FORMULA

T(n, 0) = A036243(n-1) for n>=2.

T(n, 1) = A036242(n-1) for n>=2.

EXAMPLE

     0;

     1,      0;

     2,      1,     0;

     9,      4,     1,     0;

    56,     25,     6,     1,    0;

   457,    204,    49,     8,    1,   0;

  4626,   2065,   496,    81,   10,   1,  0;

55969,  24984,  6001,   980,  121,  12,  1, 0;

788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0;

MAPLE

T := (n, k) -> BesselK(n, 1)*BesselI(k, 1) - (-1)^(n+k)*BesselI(n, 1)* BesselK(k, 1);

seq(lprint(seq(round(evalf(T(n, k), 99)), k=0..n)), n=0..8);

PROG

(Sage)

T = lambda n, k: bessel_K(n, 1)*bessel_I(k, 1) - (-1)^(n+k)*bessel_I(n, 1)* bessel_K(k, 1)

for n in range(9): [T(n, k).n().round() for k in (0..n)]

CROSSREFS

Cf. A036242, A036243.

Sequence in context: A265012 A285285 A201897 * A274740 A327350 A137452

Adjacent sequences:  A246655 A246656 A246657 * A246659 A246660 A246661

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Sep 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 05:30 EST 2020. Contains 331067 sequences. (Running on oeis4.)