login
A246661
Run Length Transform of swinging factorials (A056040).
9
1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1, 2, 6, 2, 2, 2, 4, 6, 6, 6, 30, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 2, 2, 2, 4, 2, 2, 4, 12, 6, 6, 6, 12, 6, 6, 30, 20, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1
OFFSET
0,4
COMMENTS
For the definition of the Run Length Transform see A246595.
LINKS
FORMULA
a(2^n-1) = n$ where n$ is the swinging factorial of n, A056040(n).
MATHEMATICA
f[n_] := n!/Quotient[n, 2]!^2; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* _Jean-François Alcover_, Jul 11 2017 *)
PROG
(Sage) # uses[RLT from A246660]
A246661_list = lambda len: RLT(lambda n: factorial(n)/factorial(n//2)^2, len)
A246661_list(88)
(Python)
# use RLT function from A278159
from math import factorial
def A246661(n): return RLT(n, lambda m: factorial(m)//factorial(m//2)**2) # _Chai Wah Wu_, Feb 04 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
_Peter Luschny_, Sep 07 2014
STATUS
approved