login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246661
Run Length Transform of swinging factorials (A056040).
9
1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1, 2, 6, 2, 2, 2, 4, 6, 6, 6, 30, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 2, 2, 2, 4, 2, 2, 4, 12, 6, 6, 6, 12, 6, 6, 30, 20, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1
OFFSET
0,4
COMMENTS
For the definition of the Run Length Transform see A246595.
LINKS
FORMULA
a(2^n-1) = n$ where n$ is the swinging factorial of n, A056040(n).
MATHEMATICA
f[n_] := n!/Quotient[n, 2]!^2; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* Jean-François Alcover, Jul 11 2017 *)
PROG
(Sage) # uses[RLT from A246660]
A246661_list = lambda len: RLT(lambda n: factorial(n)/factorial(n//2)^2, len)
A246661_list(88)
(Python)
# use RLT function from A278159
from math import factorial
def A246661(n): return RLT(n, lambda m: factorial(m)//factorial(m//2)**2) # Chai Wah Wu, Feb 04 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Peter Luschny, Sep 07 2014
STATUS
approved