login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246663
Products of swinging factorials A056040.
1
1, 2, 4, 6, 8, 12, 16, 20, 24, 30, 32, 36, 40, 48, 60, 64, 70, 72, 80, 96, 120, 128, 140, 144, 160, 180, 192, 216, 240, 252, 256, 280, 288, 320, 360, 384, 400, 420, 432, 480, 504, 512, 560, 576, 600, 630, 640, 720, 768, 800, 840, 864, 900, 960, 1008, 1024
OFFSET
1,2
MATHEMATICA
sw[n_] := n!/(Floor[n/2]!)^2; lim = 40; For[p = 0; a = f = Table[sw[n], {n, lim}], p =!= a, p = a; a = Select[Union@@Outer[Times, f, a], #<= sw[lim]&]]; a (* Hans Havermann, Sep 09 2014 *)
PROG
(Sage)
# For example prod_hull(A008578) are the natural numbers.
def prod_hull(f, K):
S = []; newS = []
n = 0
while f(n) <= K:
newS.append(f(n))
n += 1
while newS != S:
S = newS; T = []
for s in S:
M = map(lambda n: n*s , S)
T.extend(filter(lambda n: n <= K, M))
newS = Set(T).union(Set(S))
return sorted(newS)
prod_hull(lambda n: factorial(n)/factorial(n//2)^2, 1024)
CROSSREFS
Cf. A001013 is a sublist.
Sequence in context: A219653 A050622 A082662 * A182568 A064522 A036912
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Sep 09 2014
STATUS
approved