login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246662
a(n) = 2*(K(n,2)*I(4,2) - (-1)^n*I(n,2)*K(4,2)) where I(n,x) and K(n,x) are Bessel functions.
0
-10, 7, -3, 1, 0, 1, 5, 31, 222, 1807, 16485, 166657, 1849712, 22363201, 292571325, 4118361751, 62067997590, 997206323191, 17014575491837, 307259565176257, 5854946313840720, 117406185841990657, 2471384848995644517, 54487872863746170031, 1255692460715157555230
OFFSET
0,1
FORMULA
a(n) = a(-n).
a(n+4) = A058309(n).
MAPLE
a := n -> 2*(BesselK(n, 2)*BesselI(4, 2)-(-1)^n*BesselI(n, 2)* BesselK(4, 2)); seq(round(evalf(a(n), 99)), n=0..24);
CROSSREFS
Cf. A058309.
Sequence in context: A248153 A079166 A332980 * A246651 A089245 A343540
KEYWORD
sign
AUTHOR
Peter Luschny, Sep 12 2014
STATUS
approved