Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 27 2020 16:49:28
%S 1,2,4,6,8,12,16,20,24,30,32,36,40,48,60,64,70,72,80,96,120,128,140,
%T 144,160,180,192,216,240,252,256,280,288,320,360,384,400,420,432,480,
%U 504,512,560,576,600,630,640,720,768,800,840,864,900,960,1008,1024
%N Products of swinging factorials A056040.
%t sw[n_] := n!/(Floor[n/2]!)^2; lim = 40; For[p = 0; a = f = Table[sw[n], {n, lim}], p =!= a, p = a; a = Select[Union@@Outer[Times, f, a], #<= sw[lim]&]]; a (* _Hans Havermann_, Sep 09 2014 *)
%o (Sage)
%o # For example prod_hull(A008578) are the natural numbers.
%o def prod_hull(f, K):
%o S = []; newS = []
%o n = 0
%o while f(n) <= K:
%o newS.append(f(n))
%o n += 1
%o while newS != S:
%o S = newS; T = []
%o for s in S:
%o M = map(lambda n: n*s , S)
%o T.extend(filter(lambda n: n <= K, M))
%o newS = Set(T).union(Set(S))
%o return sorted(newS)
%o prod_hull(lambda n: factorial(n)/factorial(n//2)^2, 1024)
%Y Cf. A001013 is a sublist.
%K nonn,easy
%O 1,2
%A _Peter Luschny_, Sep 09 2014