OFFSET
0,6
LINKS
Pak Tung Ho, The toroidal crossing number of K_{4,n}, Discrete Math. 309 (2009), no. 10, 3238--3248. MR2526742(2010i:05088).
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Eric Weisstein's World of Mathematics, Toroidal Crossing Number
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
FORMULA
From R. J. Mathar, Jun 28 2012: (Start)
G.f. -2*x^5 / ( (x + 1)*(x^2 + 1)*(x - 1)^3 ).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6). - Eric W. Weisstein, Sep 11 2018
MATHEMATICA
Table[2 Floor[n/4] (n - 2 (1 + Floor[n/4])), {n, 0, 20}] (* or *)
Table[(5 - (-1)^n + 2 (n - 4) n - 4 Cos[n Pi/2])/8, {n, 0, 20}] (* or *)
Table[(5 - (-1)^n - 2 (-I)^n - 2 I^n - 8 n + 2 n^2)/8, {n, 0, 20}] (* or *)
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 2}, 80] (* or *)
CoefficientList[Series[-2 x^5/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, May 05 2012
STATUS
approved