login
A306371
Number of primitive roots of prime A103521(n).
0
1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 36, 40, 48, 64, 72, 80, 96, 120, 144, 160, 176, 200, 216, 240, 288, 320, 336, 384, 432, 448, 480, 576, 720, 768, 880, 960, 1056, 1200, 1280, 1344, 1440, 1664, 1680, 1728, 1920, 2112, 2208, 2304, 2400, 2592, 2784, 2880, 3072, 3456, 3840, 4224, 4320
OFFSET
1,2
COMMENTS
Numbers k in A008330 such that no numbers <= k occur later than k in A008330.
Different from A036912 since a(19) = 144 and A036912(19) = 128.
FORMULA
a(n) = phi(A103521(n)-1).
PROG
(PARI) b(n) = if(n==1, 2, floor(exp(Euler)*n*log(log(n^2))+2.5*n/log(log(n^2))));
f(p) = my(i=0); forprime(q=p+1, b(eulerphi(p-1))+1, i+=(eulerphi(q-1)<=eulerphi(p-1))); i;
forprime(p=2, 2e4, if(f(p)==0, print1(eulerphi(p-1), ", ")))
CROSSREFS
Cf. A103521.
Cf. also A103203, A121519.
Sequence in context: A182568 A064522 A036912 * A333255 A346729 A346311
KEYWORD
nonn
AUTHOR
Jianing Song, Feb 11 2019
STATUS
approved