The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001972 Expansion of 1/((1-x)^2*(1-x^4)) = 1/( (1+x)*(1+x^2)*(1-x)^3 ). (Formerly M0551 N0199) 16
 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 242, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 392, 406, 420, 435, 450, 465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS First differences are A008621. - Amarnath Murthy, Apr 26 2004 a(n) = least k > a(n-1) such that k + a(n-1) + a(n-2) + a(n-3) is triangular. - Amarnath Murthy, Apr 26 2004 From Jon Perry, Nov 16 2010: (Start) Column sums of the following array: 1 2 3 4 5 6 7 8 9... 1 2 3 4 5... 1... -------------------- 1 2 3 4 6 8 10 12 15 (End) A001972(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2=4x+y. - Clark Kimberling, Jun 04 2012 Number of partitions of n into parts 1 (of two sorts) and 4 (of one sort). - Joerg Arndt, Aug 08 2013 In the polynomial sequence s(n) = (x*s(n-1)*s(n-4) + y*s(n-2)*s(n-3))/s(n-5), with s(k) = 1 for k = 0..4, the leading term of s(n+5) is x^a(n). See A333260. - Michael Somos, Mar 13 2020 REFERENCES A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy] INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 208 Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004. Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=4] Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1). FORMULA From Michael Somos, Apr 21 2000: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) + 1. a(n) = floor((n+3)^2/8). (End) a(n) = Sum_{k=0..n} floor((k+4)/4) = n + 1 + Sum_{k=0..n} floor(k/4). - Paul Barry, Aug 19 2003 a(n) = a(n-4) + n + 1. - Paul Barry, Jul 14 2004 From Mitch Harris, Sep 08 2008: (Start) a(n) = Sum_{j=0..n+4} floor(j/4); a(n-4) = (1/2)*floor(n/4)*(2*n - 2 - 4*floor(n/4)). (End) A002620(n+1) = a(2*n-1)/2. A000217(n+1) = a(2*n). a(n)+a(n+1)+a(n+2)+a(n+3) = (n+4)*(n+5)/2. - Amarnath Murthy, Apr 26 2004 a(n) = n^2/8 + 3*n/4 + 15/16 + (-1)^n/16 + A056594(n+3)/4. - Amarnath Murthy, Apr 26 2004 a(n) = A130519(n+4). - Franklin T. Adams-Watters, Jul 10 2009 a(n) = floor((n+1)/(1-e^(-8/(n+1)))). - Richard R. Forberg, Aug 07 2013 a(n) = a(-6-n) for all n in Z. - Michael Somos, Mar 13 2020 E.g.f.: ((8 + 7*x + x^2)*cosh(x) + 2*sin(x) + (7 + 7*x + x^2)*sinh(x))/8. - Stefano Spezia, May 09 2023 MAPLE A001972:=-(2-z+z**3-2*z**4+z**5)/(z+1)/(z**2+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 1 MATHEMATICA CoefficientList[Series[1/((1-x)^2(1-x^4)), {x, 0, 80}], x] (* Harvey P. Dale, Mar 27 2011 *) LinearRecurrence[{2, -1, 0, 1, -2, 1}, {1, 2, 3, 4, 6, 8}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *) PROG (PARI) a(n)=(n+3)^2\8; (Magma) [Floor((n+3)^2/8): n in [0..60]]; // Vincenzo Librandi, Aug 15 2011 CROSSREFS Bisections are A000217 and A007590. - Amarnath Murthy, Apr 26 2004 Cf. A001972, A002620, A008621, A056594, A130519, A333260. Sequence in context: A054041 A019293 A130519 * A328325 A005705 A139542 Adjacent sequences: A001969 A001970 A001971 * A001973 A001974 A001975 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS Partially edited by R. J. Mathar, Jul 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 00:22 EST 2023. Contains 367717 sequences. (Running on oeis4.)