The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001971 Nearest integer to n^2/8. (Formerly M0625 N0227) 22
 0, 0, 1, 1, 2, 3, 5, 6, 8, 10, 13, 15, 18, 21, 25, 28, 32, 36, 41, 45, 50, 55, 61, 66, 72, 78, 85, 91, 98, 105, 113, 120, 128, 136, 145, 153, 162, 171, 181, 190, 200, 210, 221, 231, 242, 253, 265, 276, 288, 300, 313, 325, 338, 351, 365, 378, 392, 406, 421, 435, 450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Restricted partitions. a(0,..,2)=0; a(n) are the partitions of floor((3*n+3)/2) with 3 distinct numbers of the set {1,..,n}; partitions of floor((3*n+3)/2)-C and ceiling((3*n+3)/2)+C have equal numbers. - Paul Weisenhorn, Jun 05 2009 Odd-indexed terms are the triangular numbers, even-indexed terms are the midpoint (rounded up where necessary) of the surrounding odd-indexed terms. - Carl R. White, Aug 12 2010 a(n+2) is the number of points one can surround with n stones in Go (including the points under the stones). - Thomas Dybdahl Ahle, May 11 2014 Corollary of above: a(n) is the number of points one can surround with n+2 stones in Go (excluding the points under the stones). - Juhani Heino, Aug 29 2015 From Washington Bomfim, Jan 13 2021: (Start) For n >= 4, a(n) = A026810(n+2) - A026810(n-4). Let \n,m\ be the number of partitions of n into m non-distinct parts. For n >= 1, \n,4\ = round((n-2)^2/8). For n >= 6, \n,4\ = A026810(n) - A026810(n-6). (End) REFERENCES A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. M. Jeger, Einfuehrung in die Kombinatorik, Klett, 1975, Bd.2, pages 110-. [Paul Weisenhorn, Jun 05 2009] N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 G. Almkvist, Invariants, mostly old ones, Pacific J. Math. 86 (1980), no. 1, 1-13. MR0586866 (81j:14029) A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy] Shalosh B. Ekhad and Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1). FORMULA The listed terms through a(20)=50 satisfy a(n+2) = a(n-2) + n. - John W. Layman, Dec 16 1999 G.f.: x^2 * (1 - x + x^2) / (1 - 2*x + x^2 - x^4 + 2*x^5 - x^6) = x^2 * (1 - x^6) / ((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4)). - Michael Somos, Feb 07 2004 a(n) = floor((n^2+4)/8). - Paul Weisenhorn, Jun 05 2009 a(2*n+1) = A000217(n), a(2*n) = floor((A000217(n-1)+A000217(n)+1)/2). - Carl R. White, Aug 12 2010 Euler transform of length 6 sequence [ 1, 1, 1, 1, 0, -1]. - Michael Somos, Aug 29 2015 a(n) = a(-n) for all n in Z. - Michael Somos, Aug 29 2015 MAPLE A001971:=-(1-z+z**2)/((z+1)*(z**2+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation MATHEMATICA LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 1, 1, 2, 3}, 70] (* Harvey P. Dale, Jan 30 2014 *) PROG (PARI) {a(n) = round(n^2 / 8)}; (MAGMA) [Round(n^2/8): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011 (Haskell) a001971 = floor . (+ 0.5) . (/ 8) . fromIntegral . (^ 2) -- Reinhard Zumkeller, May 08 2012 CROSSREFS The 4th diagonal of A061857? Cf. A000217. - Carl R. White, Aug 12 2010 Kind of an inverse of A261491 (regarding Go). Cf. A026810, A001400. Sequence in context: A022829 A229172 A056837 * A122493 A284830 A053873 Adjacent sequences:  A001968 A001969 A001970 * A001972 A001973 A001974 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited Feb 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 04:09 EDT 2021. Contains 343836 sequences. (Running on oeis4.)