login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026810
Number of partitions of n in which the greatest part is 4.
40
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350
OFFSET
0,7
COMMENTS
Also number of partitions of n into exactly 4 parts.
Also the number of weighted cubic graphs on 4 nodes (=the tetrahedron) with weight n. - R. J. Mathar, Nov 03 2018
From Gus Wiseman, Jun 27 2021: (Start)
Also the number of strict integer partitions of 2n with alternating sum 4, or (by conjugation) partitions of 2n covering an initial interval of positive integers with exactly 4 odd parts. The strict partitions with alternating sum 4 are:
(4) (5,1) (6,2) (7,3) (8,4) (9,5) (10,6)
(5,2,1) (5,3,2) (5,4,3) (6,5,3) (7,6,3)
(6,3,1) (6,4,2) (7,5,2) (8,6,2)
(7,4,1) (8,5,1) (9,6,1)
(6,3,2,1) (6,4,3,1) (6,5,4,1)
(7,4,2,1) (7,4,3,2)
(7,5,3,1)
(8,5,2,1)
(6,4,3,2,1)
(End)
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
D. E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
LINKS
FORMULA
G.f.: x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = x^4/((1-x)^4*(1+x)^2*(1+x+x^2)*(1+x^2)).
a(n+4) = A001400(n). - Michael Somos, Apr 07 2012
a(n) = round( (n^3 + 3*n^2 -9*n*(n mod 2))/144 ). - Washington Bomfim, Jan 06 2021 and Jul 03 2012
a(n) = (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 -A049347(n)/9 +A056594(n)/8. - R. J. Mathar, Jul 03 2012
From Gregory L. Simay, Oct 13 2015: (Start)
a(n) = (n^3 + 3*n^2 - 9*n)/144 + a(m) - (m^3 + 3*m^2 - 9*m)/144 if n = 12k + m and m is odd. For example, a(23) = a(12*1 + 11) = (23^3 + 3*23^2 - 9*23)/144 + a(11) - (11^3 + 3*11^2 - 9*11)/144 = 94.
a(n) = (n^3 + 3*n^2)/144 + a(m) - (m^3 + 3*m^2)/144 if n = 12k + m and m is even. For example, a(22) = a(12*1 + 10) = (22^3 + 3*22^2)/144 + a(10) - (10^3 + 3*10^2)/144 = 84. (End)
a(n) = A008284(n,4). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n+1) = a(2n) + a(n+1) - a(n-3) and
a(2n) = a(2n-1) + a(n+2) - a(n-2). (End)
EXAMPLE
From Gus Wiseman, Jun 27 2021: (Start)
The a(4) = 1 through a(10) = 9 partitions of length 4:
(1111) (2111) (2211) (2221) (2222) (3222) (3322)
(3111) (3211) (3221) (3321) (3331)
(4111) (3311) (4221) (4222)
(4211) (4311) (4321)
(5111) (5211) (4411)
(6111) (5221)
(5311)
(6211)
(7111)
(End)
MAPLE
A049347 := proc(n)
op(1+(n mod 3), [1, -1, 0]) ;
end proc:
A056594 := proc(n)
op(1+(n mod 4), [1, 0, -1, 0]) ;
end proc:
A026810 := proc(n)
1/288*(n+1)*(2*n^2+4*n-13+9*(-1)^n) ;
%-A049347(n)/9 ;
%+A056594(n)/8 ;
end proc: # R. J. Mathar, Jul 03 2012
MATHEMATICA
Table[Count[IntegerPartitions[n], {4, ___}], {n, 0, 60}]
LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 1, 1, 2, 3, 5, 6}, 60] (* Vincenzo Librandi, Oct 14 2015 *)
Table[Length[IntegerPartitions[n, {4}]], {n, 0, 60}] (* Eric Rowland, Mar 02 2017 *)
CoefficientList[Series[x^4/Product[1 - x^k, {k, 1, 4}], {x, 0, 60}], x] (* Robert A. Russell, May 13 2018 *)
PROG
(PARI) for(n=0, 60, print(n, " ", round((n^3 + 3*n^2 -9*n*(n % 2))/144))); \\ Washington Bomfim, Jul 03 2012
(PARI) x='x+O('x^60); concat([0, 0, 0, 0], Vec(x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)))) \\ Altug Alkan, Oct 14 2015
(PARI) vector(60, n, n--; (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 + real(I^n)/8 - ((n+2)%3-1)/9) \\ Altug Alkan, Oct 26 2015
(PARI) print1(0, ", "); for(n=1, 60, j=0; forpart(v=n, j++, , [4, 4]); print1(j, ", ")) \\ Hugo Pfoertner, Oct 01 2018
(Magma) [Round((n^3+3*n^2-9*n*(n mod 2))/144): n in [0..60]]; // Vincenzo Librandi, Oct 14 2015
CROSSREFS
Cf. A001400, A026811, A026812, A026813, A026814, A026815, A026816, A069905 (3 positive parts), A002621 (partial sums), A005044 (first differences).
A non-strict version is A000710 or A088218.
This is column k = 2 of A152146.
A reverse version is A343941.
Sequence in context: A342497 A028309 A242717 * A001400 A372703 A350897
KEYWORD
nonn,easy
STATUS
approved