login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026810 Number of partitions of n in which the greatest part is 4. 40
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Also number of partitions of n into exactly 4 parts.

Also the number of weighted cubic graphs on 4 nodes (=the tetrahedron) with weight n. - R. J. Mathar, Nov 03 2018

From Gus Wiseman, Jun 27 2021: (Start)

Also the number of strict integer partitions of 2n with alternating sum 4, or (by conjugation) partitions of 2n covering an initial interval of positive integers with exactly 4 odd parts. The strict partitions with alternating sum 4 are:

  (4)  (5,1)  (6,2)    (7,3)    (8,4)      (9,5)      (10,6)

              (5,2,1)  (5,3,2)  (5,4,3)    (6,5,3)    (7,6,3)

                       (6,3,1)  (6,4,2)    (7,5,2)    (8,6,2)

                                (7,4,1)    (8,5,1)    (9,6,1)

                                (6,3,2,1)  (6,4,3,1)  (6,5,4,1)

                                           (7,4,2,1)  (7,4,3,2)

                                                      (7,5,3,1)

                                                      (8,5,2,1)

                                                      (6,4,3,2,1)

(End)

REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.

D. E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

LINKS

Washington Bomfim, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-2,0,0,1,1,-1).

FORMULA

G.f.: x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = x^4/((1-x)^4*(1+x)^2*(1+x+x^2)*(1+x^2)).

a(n+4) = A001400(n). - Michael Somos, Apr 07 2012

a(n) = round( (n^3 + 3*n^2 -9*n*(n mod 2))/144 ). - Washington Bomfim, Jan 06 2021 and Jul 03 2012

a(n) = (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 -A049347(n)/9 +A056594(n)/8. - R. J. Mathar, Jul 03 2012

From Gregory L. Simay, Oct 13 2015: (Start)

a(n) = (n^3 + 3*n^2 - 9*n)/144 + a(m) - (m^3 + 3*m^2 - 9*m)/144 if n = 12k + m and m is odd. For example, a(23) = a(12*1 + 11) = (23^3 + 3*23^2 - 9*23)/144 + a(11) - (11^3 + 3*11^2 - 9*11)/144 = 94.

a(n) = (n^3 + 3*n^2)/144 + a(m) - (m^3 + 3*m^2)/144 if n = 12k + m and m is even. For example, a(22) = a(12*1 + 10) = (22^3 + 3*22^2)/144 + a(10) - (10^3 + 3*10^2)/144 = 84. (End)

a(n) = A008284(n,4). - Robert A. Russell, May 13 2018

From Gregory L. Simay, Jul 28 2019: (Start)

a(2n+1) = a(2n) + a(n+1) - a(n-3) and

a(2n) = a(2n-1) + a(n+2) - a(n-2). (End)

EXAMPLE

From Gus Wiseman, Jun 27 2021: (Start)

The a(4) = 1 through a(10) = 9 partitions of length 4:

  (1111)  (2111)  (2211)  (2221)  (2222)  (3222)  (3322)

                  (3111)  (3211)  (3221)  (3321)  (3331)

                          (4111)  (3311)  (4221)  (4222)

                                  (4211)  (4311)  (4321)

                                  (5111)  (5211)  (4411)

                                          (6111)  (5221)

                                                  (5311)

                                                  (6211)

                                                  (7111)

(End)

MAPLE

A049347 := proc(n)

        op(1+(n mod 3), [1, -1, 0]) ;

end proc:

A056594 := proc(n)

        op(1+(n mod 4), [1, 0, -1, 0]) ;

end proc:

A026810 := proc(n)

        1/288*(n+1)*(2*n^2+4*n-13+9*(-1)^n) ;

        %-A049347(n)/9 ;

        %+A056594(n)/8 ;

end proc: # R. J. Mathar, Jul 03 2012

MATHEMATICA

Table[Count[IntegerPartitions[n], {4, ___}], {n, 0, 60}]

LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 1, 1, 2, 3, 5, 6}, 60] (* Vincenzo Librandi, Oct 14 2015 *)

Table[Length[IntegerPartitions[n, {4}]], {n, 0, 60}] (* Eric Rowland, Mar 02 2017 *)

CoefficientList[Series[x^4/Product[1 - x^k, {k, 1, 4}], {x, 0, 60}], x] (* Robert A. Russell, May 13 2018 *)

PROG

(PARI) for(n=0, 60, print(n, " ", round((n^3 + 3*n^2 -9*n*(n % 2))/144))); \\ Washington Bomfim, Jul 03 2012

(PARI) x='x+O('x^60); concat([0, 0, 0, 0], Vec(x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)))) \\ Altug Alkan, Oct 14 2015

(PARI) vector(60, n, n--; (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 + real(I^n)/8 - ((n+2)%3-1)/9) \\ Altug Alkan, Oct 26 2015

(PARI) print1(0, ", "); for(n=1, 60, j=0; forpart(v=n, j++, , [4, 4]); print1(j, ", ")) \\ Hugo Pfoertner, Oct 01 2018

(MAGMA) [Round((n^3+3*n^2-9*n*(n mod 2))/144): n in [0..60]]; // Vincenzo Librandi, Oct 14 2015

CROSSREFS

Cf. A001400, A026811, A026812, A026813, A026814, A026815, A026816, A069905 (3 positive parts), A002621 (partial sums), A005044 (first differences).

A non-strict version is A000710 or A088218.

This is column k = 2 of A152146.

A reverse version is A343941.

Cf. A000041, A000070, A000097, A067659, A103919, A120452, A236559, A239830, A306145, A343942, A344616, A344649, A344651.

Sequence in context: A342497 A028309 A242717 * A001400 A008773 A008772

Adjacent sequences:  A026807 A026808 A026809 * A026811 A026812 A026813

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 21:02 EDT 2021. Contains 346408 sequences. (Running on oeis4.)