login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n in which the greatest part is 4.
40

%I #121 Sep 08 2022 08:44:49

%S 0,0,0,0,1,1,2,3,5,6,9,11,15,18,23,27,34,39,47,54,64,72,84,94,108,120,

%T 136,150,169,185,206,225,249,270,297,321,351,378,411,441,478,511,551,

%U 588,632,672,720,764,816,864,920,972,1033,1089,1154,1215,1285,1350

%N Number of partitions of n in which the greatest part is 4.

%C Also number of partitions of n into exactly 4 parts.

%C Also the number of weighted cubic graphs on 4 nodes (=the tetrahedron) with weight n. - _R. J. Mathar_, Nov 03 2018

%C From _Gus Wiseman_, Jun 27 2021: (Start)

%C Also the number of strict integer partitions of 2n with alternating sum 4, or (by conjugation) partitions of 2n covering an initial interval of positive integers with exactly 4 odd parts. The strict partitions with alternating sum 4 are:

%C (4) (5,1) (6,2) (7,3) (8,4) (9,5) (10,6)

%C (5,2,1) (5,3,2) (5,4,3) (6,5,3) (7,6,3)

%C (6,3,1) (6,4,2) (7,5,2) (8,6,2)

%C (7,4,1) (8,5,1) (9,6,1)

%C (6,3,2,1) (6,4,3,1) (6,5,4,1)

%C (7,4,2,1) (7,4,3,2)

%C (7,5,3,1)

%C (8,5,2,1)

%C (6,4,3,2,1)

%C (End)

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.

%D D. E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

%H Washington Bomfim, <a href="/A026810/b026810.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,-1).

%F G.f.: x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = x^4/((1-x)^4*(1+x)^2*(1+x+x^2)*(1+x^2)).

%F a(n+4) = A001400(n). - _Michael Somos_, Apr 07 2012

%F a(n) = round( (n^3 + 3*n^2 -9*n*(n mod 2))/144 ). - _Washington Bomfim_, Jan 06 2021 and Jul 03 2012

%F a(n) = (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 -A049347(n)/9 +A056594(n)/8. - _R. J. Mathar_, Jul 03 2012

%F From _Gregory L. Simay_, Oct 13 2015: (Start)

%F a(n) = (n^3 + 3*n^2 - 9*n)/144 + a(m) - (m^3 + 3*m^2 - 9*m)/144 if n = 12k + m and m is odd. For example, a(23) = a(12*1 + 11) = (23^3 + 3*23^2 - 9*23)/144 + a(11) - (11^3 + 3*11^2 - 9*11)/144 = 94.

%F a(n) = (n^3 + 3*n^2)/144 + a(m) - (m^3 + 3*m^2)/144 if n = 12k + m and m is even. For example, a(22) = a(12*1 + 10) = (22^3 + 3*22^2)/144 + a(10) - (10^3 + 3*10^2)/144 = 84. (End)

%F a(n) = A008284(n,4). - _Robert A. Russell_, May 13 2018

%F From _Gregory L. Simay_, Jul 28 2019: (Start)

%F a(2n+1) = a(2n) + a(n+1) - a(n-3) and

%F a(2n) = a(2n-1) + a(n+2) - a(n-2). (End)

%e From _Gus Wiseman_, Jun 27 2021: (Start)

%e The a(4) = 1 through a(10) = 9 partitions of length 4:

%e (1111) (2111) (2211) (2221) (2222) (3222) (3322)

%e (3111) (3211) (3221) (3321) (3331)

%e (4111) (3311) (4221) (4222)

%e (4211) (4311) (4321)

%e (5111) (5211) (4411)

%e (6111) (5221)

%e (5311)

%e (6211)

%e (7111)

%e (End)

%p A049347 := proc(n)

%p op(1+(n mod 3),[1,-1,0]) ;

%p end proc:

%p A056594 := proc(n)

%p op(1+(n mod 4),[1,0,-1,0]) ;

%p end proc:

%p A026810 := proc(n)

%p 1/288*(n+1)*(2*n^2+4*n-13+9*(-1)^n) ;

%p %-A049347(n)/9 ;

%p %+A056594(n)/8 ;

%p end proc: # _R. J. Mathar_, Jul 03 2012

%t Table[Count[IntegerPartitions[n], {4, ___}], {n, 0, 60}]

%t LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 1, 1, 2, 3, 5, 6}, 60] (* _Vincenzo Librandi_, Oct 14 2015 *)

%t Table[Length[IntegerPartitions[n, {4}]], {n, 0, 60}] (* _Eric Rowland_, Mar 02 2017 *)

%t CoefficientList[Series[x^4/Product[1 - x^k, {k, 1, 4}], {x, 0, 60}], x] (* _Robert A. Russell_, May 13 2018 *)

%o (PARI) for(n=0, 60, print(n, " ", round((n^3 + 3*n^2 -9*n*(n % 2))/144))); \\ _Washington Bomfim_, Jul 03 2012

%o (PARI) x='x+O('x^60); concat([0, 0, 0, 0], Vec(x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)))) \\ _Altug Alkan_, Oct 14 2015

%o (PARI) vector(60, n, n--; (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 + real(I^n)/8 - ((n+2)%3-1)/9) \\ _Altug Alkan_, Oct 26 2015

%o (PARI) print1(0,", "); for(n=1,60,j=0;forpart(v=n,j++,,[4,4]); print1(j,", ")) \\ _Hugo Pfoertner_, Oct 01 2018

%o (Magma) [Round((n^3+3*n^2-9*n*(n mod 2))/144): n in [0..60]]; // _Vincenzo Librandi_, Oct 14 2015

%Y Cf. A001400, A026811, A026812, A026813, A026814, A026815, A026816, A069905 (3 positive parts), A002621 (partial sums), A005044 (first differences).

%Y A non-strict version is A000710 or A088218.

%Y This is column k = 2 of A152146.

%Y A reverse version is A343941.

%Y Cf. A000041, A000070, A000097, A067659, A103919, A120452, A236559, A239830, A306145, A343942, A344616, A344649, A344651.

%K nonn,easy

%O 0,7

%A _Clark Kimberling_