OFFSET
0,11
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, -1, 0, 1, 2, 1, 0, 1, -1, -1, -2, -1, -1, 1, 0, 1, 2, 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: x^8 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)). [Colin Barker, Feb 22 2013]
a(n) = A008284(n,8). - Robert A. Russell, May 13 2018
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} 1. - Wesley Ivan Hurt, Jul 04 2019
MATHEMATICA
CoefficientList[Series[x^8/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Table[Count[IntegerPartitions[n], _?(Max[#]==8&)], {n, 0, 55}] (* Harvey P. Dale, Dec 04 2022 *)
PROG
(PARI) x='x+O('x^99); concat(vector(8), Vec(x^8/prod(k=1, 8, 1-x^k))) \\ Altug Alkan, May 17 2018
(GAP) List([0..70], n->NrPartitions(n, 8)); # Muniru A Asiru, May 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017
Two inoperative Mathematica programs deleted by Harvey P. Dale, Dec 04 2022
STATUS
approved