login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218508
Number of partitions of n in which any two parts differ by at most 6.
4
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 51, 69, 86, 112, 139, 176, 214, 268, 321, 394, 470, 567, 668, 800, 933, 1103, 1281, 1498, 1725, 2006, 2293, 2643, 3010, 3443, 3897, 4438, 4995, 5652, 6341, 7135, 7967, 8932, 9930, 11079, 12283, 13645, 15071, 16692, 18372
OFFSET
0,3
LINKS
FORMULA
G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..6} (1-x^(i+j)).
MAPLE
b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k))))
end:
a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 6), i=1..n):
seq(a(n), n=0..80);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k - 1] + b[n - i, i, k]]]];
a[n_] := If[n == 0, 1, 0] + Sum[b[n - i, i, 6], {i, 1, n}];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A194621.
Sequence in context: A309194 A330640 A319474 * A340719 A026814 A008637
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 31 2012
STATUS
approved