The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194621 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n in which any two parts differ by at most k. 17
 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 2, 5, 6, 7, 7, 7, 4, 6, 9, 10, 11, 11, 11, 2, 7, 10, 13, 14, 15, 15, 15, 4, 8, 14, 17, 20, 21, 22, 22, 22, 3, 9, 15, 22, 25, 28, 29, 30, 30, 30, 4, 10, 20, 27, 34, 37, 40, 41, 42, 42, 42, 2, 11, 21, 33, 41, 48, 51, 54, 55, 56, 56, 56 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS T(n,k) = A000041(n) for n >= 0 and k >= n. LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA G.f. of column k: 1 + Sum_{j>0} x^j / Product_{i=0..k} (1-x^(i+j)). EXAMPLE T(6,0) = 4: [6], [3,3], [2,2,2], [1,1,1,1,1,1]. T(6,1) = 6: [6], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1]. T(6,2) = 9: [6], [4,2], [3,1,1,1], [3,2,1], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1]. Triangle begins:   1;   1, 1;   2, 2,  2;   2, 3,  3,  3;   3, 4,  5,  5,  5;   2, 5,  6,  7,  7,  7;   4, 6,  9, 10, 11, 11, 11;   2, 7, 10, 13, 14, 15, 15, 15; MAPLE b:= proc(n, i, k) option remember;       if n<0 or k<0 then 0     elif n=0 then 1     elif i<1 then 0     else b(n, i-1, k-1) +b(n-i, i, k)       fi     end: T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n): seq(seq(T(n, k), k=0..n), n=0..20); MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, k-1] + b[n-i, i, k]]]]; t[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *) CROSSREFS Columns k=0-10 give (for n>0): A000005, A000027, A117142, A117143, A218506, A218507, A218508, A218509, A218510, A218511, A218512. Main diagonal gives: A000041. Sequence in context: A097913 A029269 A272187 * A088004 A070548 A209628 Adjacent sequences:  A194618 A194619 A194620 * A194622 A194623 A194624 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Aug 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 13:02 EDT 2021. Contains 343995 sequences. (Running on oeis4.)