login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117143
Number of partitions of n in which any two parts differ by at most 3.
8
1, 2, 3, 5, 7, 10, 13, 17, 22, 27, 33, 41, 48, 57, 68, 78, 90, 105, 118, 134, 153, 170, 190, 214, 235, 260, 289, 315, 345, 380, 411, 447, 488, 525, 567, 615, 658, 707, 762, 812, 868, 931, 988, 1052, 1123, 1188, 1260, 1340, 1413, 1494, 1583, 1665, 1755, 1854
OFFSET
1,2
LINKS
Jonathan Bloom, Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
FORMULA
G.f.: sum(x^k/[(1-x^k)(1-x^(k+1))(1-x^(k+2))(1-x^(k+3))], k=1..infinity). More generally, the g.f. of the number of partitions in which any two parts differ by at most b is sum(x^k/product(1-x^j, j=k..k+b), k=1..infinity).
G.f.: x*(x^5-x^4-x^3+x+1) / ((x-1)^4*(x+1)*(x^2+x+1)^2). - Colin Barker, Mar 05 2015
a(n)=(2*floor((n+2)/3)*(14*floor((n+2)/3)^2-(10*n+21)*floor((n+2)/3)+2*(n^2+5*n+7))-(1-(-1)^floor((n+2)/3))*(-1)^(n+2-floor((n+2)/3)))/16. - Luce ETIENNE, May 12 2015
EXAMPLE
a(6) = 10 because we have [6], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1] ([5,1] does not qualify).
MAPLE
g:=sum(x^k/(1-x^k)/(1-x^(k+1))/(1-x^(k+2))/(1-x^(k+3)), k=1..85): gser:=series(g, x=0, 65): seq(coeff(gser, x^n), n=1..59); with(combinat): for n from 1 to 7 do P:=partition(n): A:={}: for j from 1 to nops(P) do if P[j][nops(P[j])]-P[j][1]<4 then A:=A union {P[j]} else A:=A fi od: print(A); od: # this program yields the partitions
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(Max[#] - Min[#] <= 3 &)], {n, 30}] (* Birkas Gyorgy, Feb 20 2011 *)
PROG
(PARI) Vec(x*(x^5-x^4-x^3+x+1)/((x-1)^4*(x+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Mar 05 2015
(Magma) [(2*Floor((n+2)/3)*(14*Floor((n+2)/3)^2-(10*n+21)*Floor((n+2)/3)+2*(n^2+5*n+7))-(1-(-1)^Floor((n+2)/3))*(-1)^(n+2-Floor((n+2)/3)))/16: n in [1..60]]; // Vincenzo Librandi, May 12 2015
CROSSREFS
Cf. A117142.
Column k=3 of A194621.
Sequence in context: A194205 A136413 A177337 * A253170 A337567 A177332
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Feb 27 2006
STATUS
approved