OFFSET
0,3
COMMENTS
Number of triangles in triangular matchstick arrangement of side n, for n >= 1. Row sums of A085691.
We observe that the sequence is the transform of A006578 by the following transform T: T(u_0,u_1,u_2,u_3,...)=(u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In another terms v_p=sum(u_k,k=0..p) and the G.f phi_v of v is given by: phi_v=phi_u/(1-z). - Richard Choulet, Jan 28 2010
Row sums of A220053, for n > 0. - Reinhard Zumkeller, Dec 03 2012
a(n) has the expansion (1*0)+(1*1)+(4*1)+(4*2)+(7*2)+(7*3)+... ,where the expansion stops when a(n) has n+1 number of terms. The expansion starts at (1*0), and progresses by alternating addition of 1 to the second number and 3 to the first number. - Arlu Genesis A. Padilla, Jun 04 2014
Taking the absolute values of each n-th difference and excluding the first n terms of each mentioned sequence, A002717 has the first difference A006578 (see formula of Michael Somos dated Jun 09 2014), the second difference A032766 (see 'partial sum' crossref), the third difference A000034, the fourth difference A000012, and the fifth to n-th difference A000004. - Arlu Genesis A. Padilla, Jun 12 2014
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Ralph E. Edwards et al., Problem 889: A well-known problem, Math. Mag., 47 (1974), 289-292.
F. Gerrish, How many triangles, Math. Gaz., 54 (1970), 241-246.
J. Halsall, An interesting series, Math. Gaz., 46 (1962), 55-56.
J. Halsall, An interesting series, Math. Gaz., 46 (1962), 55-56. [Annotated scanned copy]
M. E. Larsen, The eternal triangle - a history of a counting problem, College Math. J., 20 (1989), 370-392.
B. D. Mastrantone, How Many Triangles?, Math. Gaz., 55 (1971), 438-440.
Hugo Pfoertner, Illustration of A002717(5) and A002717(6)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
L. Smiley, A Quick Solution of Triangle Counting, Mathematics Magazine, 66, #1, Feb '93, p. 40.
Eric Weisstein's World of Mathematics, Triangle Tiling.
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
a(n) = (1/16)*[2n(2n+1)(n+2)+cos(Pi*n)-1]. - Justin C. Bozonier (justinb67(AT)excite.com), Dec 05 2000
a(m+1)-2a(m)+2a(m-2)-a(m-3) = 3. - Len Smiley, Oct 08 2001
a(n) = (2n(2n+1)(n+2)+(-1)^n-1)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Oct 25 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*k*binomial(k+1,2).
G.f.: x(1+2x)/((1+x)(1-x)^4). - Simon Plouffe in his 1992 dissertation (with a different offset).
a(0)=0, a(1)=1, a(2)=5, a(3)=13, a(4)=27, a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+ 3*a(n-4)- a(n-5). - Harvey P. Dale, Jan 20 2013
a(n) = a(n-1) + A016777(floor(0.5n)*floor(0.5+0.5n). - Arlu Genesis A. Padilla, Jun 04 2014
a(n) = Sum_{i=1..n} T(n-i+1)+T(n-2*i+1), where T(n)=n*(n+1)/2=A000217(n) if n>0 and 0 if n<=0. So we have a(n+2)-a(n)=(n+2)^2+(n+1)*(n+2)/2. - Maurice Mischler, Sep 08 2014
E.g.f.: (x*(2*x^2 + 11*x + 9)*cosh(x) + (2*x^3 + 11*x^2 + 9*x - 1)*sinh(x))/8. - Stefano Spezia, Jul 19 2022
EXAMPLE
f(3)=13 because the following figure contains 13 triangles if horizontal bars are added:
....... /\
...... /\/\
..... /\/\/\
G.f. = x + 5*x^2 + 13*x^3 + 27*x^4 + 48*x^5 + 78*x^6 + 118*x^7 + 170*x^8 + ...
MATHEMATICA
Table[Floor[n(n+2)(2n+1)/8], {n, 0, 50}] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 5, 13, 27}, 50] (* Harvey P. Dale, Jan 20 2013 *)
PROG
(PARI) {a(n) = n * (n+2) * (2*n+1) \ 8};
(Magma) [Floor(n*(n+2)*(2*n+1)/8): n in [0..50]]; // Wesley Ivan Hurt, Jun 04 2014
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved