login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002717
a(n) = floor(n(n+2)(2n+1)/8).
(Formerly M3827 N1569)
34
0, 1, 5, 13, 27, 48, 78, 118, 170, 235, 315, 411, 525, 658, 812, 988, 1188, 1413, 1665, 1945, 2255, 2596, 2970, 3378, 3822, 4303, 4823, 5383, 5985, 6630, 7320, 8056, 8840, 9673, 10557, 11493, 12483, 13528, 14630, 15790, 17010, 18291, 19635, 21043, 22517, 24058
OFFSET
0,3
COMMENTS
Number of triangles in triangular matchstick arrangement of side n, for n >= 1. Row sums of A085691.
We observe that the sequence is the transform of A006578 by the following transform T: T(u_0,u_1,u_2,u_3,...)=(u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In another terms v_p=sum(u_k,k=0..p) and the G.f phi_v of v is given by: phi_v=phi_u/(1-z). - Richard Choulet, Jan 28 2010
Row sums of A220053, for n > 0. - Reinhard Zumkeller, Dec 03 2012
a(n) has the expansion (1*0)+(1*1)+(4*1)+(4*2)+(7*2)+(7*3)+... ,where the expansion stops when a(n) has n+1 number of terms. The expansion starts at (1*0), and progresses by alternating addition of 1 to the second number and 3 to the first number. - Arlu Genesis A. Padilla, Jun 04 2014
Taking the absolute values of each n-th difference and excluding the first n terms of each mentioned sequence, A002717 has the first difference A006578 (see formula of Michael Somos dated Jun 09 2014), the second difference A032766 (see 'partial sum' crossref), the third difference A000034, the fourth difference A000012, and the fifth to n-th difference A000004. - Arlu Genesis A. Padilla, Jun 12 2014
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ralph E. Edwards et al., Problem 889: A well-known problem, Math. Mag., 47 (1974), 289-292.
F. Gerrish, How many triangles, Math. Gaz., 54 (1970), 241-246.
J. Halsall, An interesting series, Math. Gaz., 46 (1962), 55-56.
J. Halsall, An interesting series, Math. Gaz., 46 (1962), 55-56. [Annotated scanned copy]
M. E. Larsen, The eternal triangle - a history of a counting problem, College Math. J., 20 (1989), 370-392.
B. D. Mastrantone, How Many Triangles?, Math. Gaz., 55 (1971), 438-440.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
L. Smiley, A Quick Solution of Triangle Counting, Mathematics Magazine, 66, #1, Feb '93, p. 40.
Eric Weisstein's World of Mathematics, Triangle Tiling.
FORMULA
a(n) = (1/16)*[2n(2n+1)(n+2)+cos(Pi*n)-1]. - Justin C. Bozonier (justinb67(AT)excite.com), Dec 05 2000
a(m+1)-2a(m)+2a(m-2)-a(m-3) = 3. - Len Smiley, Oct 08 2001
a(n) = (2n(2n+1)(n+2)+(-1)^n-1)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Oct 25 2003
a(n) = A000292(n-1) + A002623(n-2). - Hugo Pfoertner, Mar 06 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*k*binomial(k+1,2).
G.f.: x(1+2x)/((1+x)(1-x)^4). - Simon Plouffe in his 1992 dissertation (with a different offset).
a(0)=0, a(1)=1, a(2)=5, a(3)=13, a(4)=27, a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+ 3*a(n-4)- a(n-5). - Harvey P. Dale, Jan 20 2013
a(n) = a(n-1) + A016777(floor(0.5n)*floor(0.5+0.5n). - Arlu Genesis A. Padilla, Jun 04 2014
a(-n) = - A045947(n). a(n) = a(n-1) + A006578(n). - Michael Somos, Jun 09 2014
a(n) = Sum_{i=1..n} T(n-i+1)+T(n-2*i+1), where T(n)=n*(n+1)/2=A000217(n) if n>0 and 0 if n<=0. So we have a(n+2)-a(n)=(n+2)^2+(n+1)*(n+2)/2. - Maurice Mischler, Sep 08 2014
E.g.f.: (x*(2*x^2 + 11*x + 9)*cosh(x) + (2*x^3 + 11*x^2 + 9*x - 1)*sinh(x))/8. - Stefano Spezia, Jul 19 2022
EXAMPLE
f(3)=13 because the following figure contains 13 triangles if horizontal bars are added:
....... /\
...... /\/\
..... /\/\/\
G.f. = x + 5*x^2 + 13*x^3 + 27*x^4 + 48*x^5 + 78*x^6 + 118*x^7 + 170*x^8 + ...
MAPLE
A002717:=n->floor(n*(n+2)*(2*n+1)/8); seq(A002717(n), n=0..100);
MATHEMATICA
Table[Floor[n(n+2)(2n+1)/8], {n, 0, 50}] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 5, 13, 27}, 50] (* Harvey P. Dale, Jan 20 2013 *)
PROG
(PARI) {a(n) = n * (n+2) * (2*n+1) \ 8};
(Magma) [Floor(n*(n+2)*(2*n+1)/8): n in [0..50]]; // Wesley Ivan Hurt, Jun 04 2014
CROSSREFS
Cf. A000292 number of triangles with same orientation as largest triangle, A002623 number of triangles pointing in opposite direction to largest triangle, A085691 number of triangles of side k in arrangement of side n.
Bisections: A135712 (odd part), A135713 (even part).
Sequence in context: A212151 A123326 A025193 * A299897 A023541 A079989
KEYWORD
nonn,easy,nice
STATUS
approved