The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002716 An infinite coprime sequence defined by recursion. (Formerly M2488 N0986) 2
 3, 5, 13, 17, 241, 257, 65281, 65537, 4294901761, 4294967297, 18446744069414584321, 18446744073709551617, 340282366920938463444927863358058659841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Every term is relatively prime to all others. - Michael Somos, Feb 01 2004 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Table of n, a(n) for n=0..12. A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422. A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy] R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. FORMULA a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - Michael Somos, Feb 01 2004 Conjecture: a(2n+1)=A001146(n+1)+1. - R. J. Mathar, May 15 2007 a(2*n) = A220294(n). a(2*n + 1) = A000215(n+1). - Michael Somos, Dec 10 2012 MATHEMATICA a[0] = 3; a[1] = 5; a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 16 2018, after _Michel Somos_ *) PROG (PARI) {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* Michael Somos, Feb 01 2004 */ CROSSREFS Cf. A000215, A001685, A002715, A003686, A064526, A220294. Sequence in context: A131020 A283398 A084706 * A046154 A180120 A075704 Adjacent sequences: A002713 A002714 A002715 * A002717 A002718 A002719 KEYWORD nonn AUTHOR N. J. A. Sloane. EXTENSIONS More terms from Jeffrey Shallit. Edited by Michael Somos, Feb 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 03:35 EDT 2023. Contains 365714 sequences. (Running on oeis4.)