login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064526
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = p(n) and A064183(n) = q(n).
13
0, 1, 2, 3, 5, 13, 49, 529, 21121, 10369921, 213952189441, 2214253468601687041, 473721461635593679669210030081, 1048939288228833101089604217183056027094304481281
OFFSET
0,3
COMMENTS
Every nonzero term is relatively prime to all others (which proves that there are infinitely many primes). See A236394 for the primes that appear.
LINKS
Michael Somos and R. Haas, A linked pair of sequences implies the primes are infinite, Amer. Math. Monthly, 110(6) (2003), 539-540.
FORMULA
a(n) = (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)) for n >= 2.
a(n) ~ c^(phi^n), where c = 1.2364241784241086061606568429916822975882631646194967549068405592472125928485... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
Flatten[{0, 1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3}, a, {n, 2, 15}]}] (* Vaclav Kotesovec, May 21 2015 *)
PROG
(PARI) {a(n) = local(v); if( n<3, max(0, n), v = [1, 1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])}
(PARI) {a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))}
CROSSREFS
See A236394 for the primes that are produced.
Sequence in context: A215102 A110364 A111288 * A261192 A103594 A042695
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Oct 07 2001
STATUS
approved