login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064183
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = q(n) and A064526(n) = p(n).
7
1, 1, 1, 2, 3, 10, 39, 490, 20631, 10349290, 213941840151, 2214253254659846890, 473721461633379426414550183191, 1048939288228833100615882755549676600679754298090
OFFSET
0,4
LINKS
Michael Somos and R. Haas, A linked pair of sequences implies the primes are infinite, Amer. Math. Monthly, 110(6) (2003), 539-540.
FORMULA
a(n) = (a(n-1) + a(n-2))*a(n-2) for n >= 2.
Lim_{n -> infinity} a(n)/a(n-1)^phi = 1, where phi = A001622. - Gerald McGarvey, Aug 29 2004
a(n) ~ c^(phi^n), where c = 1.23642417842410860616065684299168229758826316461949675490684055924721259... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==(a[n-1]+a[n-2])*a[n-2], a[1]==1, a[2]==1}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, May 21 2015 *)
PROG
(PARI) {a(n) = local(v); if( n<3, n>=0, v = [1, 1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[2])}
(PARI) {a(n) = if( n<3, n>=0, (a(n-1) + a(n-2)) * a(n-2))}
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 20 2001
STATUS
approved