The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164933 Word structures of length n using a 10-ary alphabet, including a special character, which may occur in the leftmost word position only if n=1. 1
1, 2, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562594, 3534961, 23428397, 163187870, 1190538144, 9066908419, 71837342107, 590009213152, 5004416730974, 43667740987637, 390497323261737, 3565602957116674, 33130941174471484, 312322981161532615, 2979191694795132887 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) is also the number of ways of placing n labeled balls into 9 indistinguishable boxes and one special box, where the first ball is allowed to be member of the special box only if n=1.
LINKS
FORMULA
a(n) = Sum_{m=0..n-1} C(n-1,m) Sum_{k=0..9} S2 (n-m, k), if n>1; a(n) = n+1 else.
a(n) = 2119/11520*2^n +103/840*3^n +53/1152*4^n +11/900*5^n +6^n/384 +7^n/2520 +8^n/11520 +10^n/403200, if n>1; a(n) = n+1 else.
G.f.: (403200*x^9 -478089*x^8 +35157*x^7 +202072*x^6 -136061*x^5 +42574*x^4 -7538*x^3 +774*x^2 -43*x+1) / ((2*x-1)* (3*x-1)* (4*x-1)* (5*x-1)* (6*x-1)* (7*x-1)* (8*x-1)* (10*x-1)).
EXAMPLE
a(0) = 1, the only possible word structure is the empty word.
a(1) = 2, word structures are a and X, where X denotes the special character.
a(2) = 3, word structures are aa, ab, aX.
a(3) = 10, word structures are aaa, aab, aba, baa, abc, aaX, abX, aXa, aXb, aXX.
MAPLE
# first program:
a:= n-> `if`(n<2, n+1, 2119/11520*2^n +103/840*3^n +53/1152*4^n +11/900*5^n +6^n/384 +7^n/2520 +8^n/11520 +10^n/403200): seq(a(n), n=0..30);
# second program:
a:= n-> `if`(n<2, n+1, add(add(Stirling2(n-m, k), k=0..9) *binomial(n-1, m), m=0..n-1)): seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A296269 A141102 A144720 * A003048 A008980 A064183
KEYWORD
easy,nonn
AUTHOR
Alois P. Heinz, Aug 31 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 11:09 EDT 2024. Contains 373481 sequences. (Running on oeis4.)