login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164864
Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.
13
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213530, 27641927, 190829797, 1381367941, 10448276360, 82285618467, 672294831619, 5676711562593, 49344452550230, 439841775811967, 4005444732928641, 37136385907400125, 349459367068932740
OFFSET
0,3
LINKS
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See pp. 3-4, 16-18.
N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
Eric Weisstein's World of Mathematics, Set Partition
Index entries for linear recurrences with constant coefficients, signature (46,-906,9996,-67809,291774,-790964,1290824,-1136160,403200).
FORMULA
a(n) = Sum_{k=0..10} Stirling2 (n,k).
a(n) = ceiling(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800).
G.f.: (148329*x^9 -613453*x^8 +855652*x^7 -596229*x^6 +240065*x^5 -59410*x^4 +9177*x^3 -862*x^2 +45*x-1) / ((10*x-1) *(8*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).
a(n) <= A000110(n) with equality only for n <= 10.
MAPLE
# First program:
a:= n-> ceil(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800): seq(a(n), n=0..25);
# second program:
a:= n-> add(Stirling2(n, k), k=0..10): seq(a(n), n=0..25);
MATHEMATICA
Table[Sum[StirlingS2[n, k], {k, 0, 10}], {n, 0, 30}] (* Harvey P. Dale, Nov 22 2023 *)
KEYWORD
easy,nonn
AUTHOR
Alois P. Heinz, Aug 28 2009
STATUS
approved