login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.
13

%I #40 Nov 05 2024 15:12:14

%S 1,1,2,5,15,52,203,877,4140,21147,115975,678569,4213530,27641927,

%T 190829797,1381367941,10448276360,82285618467,672294831619,

%U 5676711562593,49344452550230,439841775811967,4005444732928641,37136385907400125,349459367068932740

%N Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.

%H Alois P. Heinz, <a href="/A164864/b164864.txt">Table of n, a(n) for n = 0..1000</a>

%H Joerg Arndt and N. J. A. Sloane, <a href="/A278984/a278984.txt">Counting Words that are in "Standard Order"</a>

%H Dmytro S. Inosov and Emil Vlasák, <a href="https://arxiv.org/abs/2410.21427">Cryptarithmically unique terms in integer sequences</a>, arXiv:2410.21427 [math.NT], 2024. See pp. 3-4, 16-18.

%H N. Moreira and R. Reis, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Moreira/moreira8.html">On the Density of Languages Representing Finite Set Partitions</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.

%H Pierpaolo Natalini, Paolo Emilio Ricci, <a href="https://doi.org/10.3390/axioms7040071">New Bell-Sheffer Polynomial Sets</a>, Axioms 2018, 7(4), 71.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SetPartition.html">Set Partition</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Set_partition">Partition of a set</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (46,-906,9996,-67809,291774,-790964,1290824,-1136160,403200).

%F a(n) = Sum_{k=0..10} Stirling2 (n,k).

%F a(n) = ceiling(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800).

%F G.f.: (148329*x^9 -613453*x^8 +855652*x^7 -596229*x^6 +240065*x^5 -59410*x^4 +9177*x^3 -862*x^2 +45*x-1) / ((10*x-1) *(8*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).

%F a(n) <= A000110(n) with equality only for n <= 10.

%p # First program:

%p a:= n-> ceil(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800): seq(a(n), n=0..25);

%p # second program:

%p a:= n-> add(Stirling2(n, k), k=0..10): seq(a(n), n=0..25);

%t Table[Sum[StirlingS2[n,k],{k,0,10}],{n,0,30}] (* _Harvey P. Dale_, Nov 22 2023 *)

%Y Cf. A000110, A048993, A008291, A098825, A000012, A000079, A007051, A007581, A124303, A056272, A056273, A099262, A099263, A164863.

%Y A row of the array in A278984.

%K easy,nonn

%O 0,3

%A _Alois P. Heinz_, Aug 28 2009