|
|
A098825
|
|
Triangle read by rows: T(n,k) = number of partial derangements, that is, the number of permutations of n distinct, ordered items in which exactly k of the items are in their natural ordered positions, for n >= 0, k = n, n-1, ..., 1, 0.
|
|
7
|
|
|
1, 1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 6, 8, 9, 1, 0, 10, 20, 45, 44, 1, 0, 15, 40, 135, 264, 265, 1, 0, 21, 70, 315, 924, 1855, 1854, 1, 0, 28, 112, 630, 2464, 7420, 14832, 14833, 1, 0, 36, 168, 1134, 5544, 22260, 66744, 133497, 133496, 1, 0, 45, 240, 1890, 11088, 55650, 222480, 667485, 1334960, 1334961
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
In other words, T(n,k) is the number of permutations of n letters that are at Hammimg distance k from the identity permutation (Cf. Diaconis, p. 112). - N. J. A. Sloane, Mar 02 2007
The sequence d(n) = 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ... (A000166) is the number of derangements, that is, the number of permutations of n distinct, ordered items in which none of the items is in its natural ordered position.
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
P. Diaconis, Group Representations in Probability and Statistics, IMS, 1988; see p. 112.
Chris D. H. Evans, John Hughes and Julia Houston, Significance-testing the validity of idiographic methods: A little derangement goes a long way, British Journal of Mathematical and Statistical Psychology, 1 November 2002, Vol. 55, pp. 385-390.
Eric Weisstein's World of Mathematics, Partial Derangement
|
|
FORMULA
|
T(0, 0) = 1; d(0) = T(0, 0); for k = n, n-1, ..., 1, T(n, k) = c(n, k) d(n-k) where c(n, k) = n! / [(k!) (n-k)! ]; T(n, 0) = n! - [ T(n, n) + T(n, n-1) + ... + T(n, 1) ]; d(n) = T(n, 0).
T(n,k) = A008290(n,n-k). - Vladeta Jovovic, Sep 04 2006
Assuming a uniform distribution on S_n, the mean Hamming distance is n-1 and the variance is 1 (Diaconis, p. 117). - N. J. A. Sloane, Mar 02 2007
|
|
EXAMPLE
|
Assume d(0), d(1), d(2) are given. Then
T(3, 3) = c(3, 3) d(0) = (1) (1) = 1
T(3, 2) = c(3, 2) d(1) = (3) (0) = 0
T(3, 1) = c(3, 1) d(2) = (3) (1) = 3
T(3, 0) = 3! - [ 1 + 0 + 3 ] = 6 - 4 = 2
d(3) = T(3, 0).
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 3, 2;
1, 0, 6, 8, 9;
1, 0, 10, 20, 45, 44;
1, 0, 15, 40, 135, 264, 265;
1, 0, 21, 70, 315, 924, 1855, 1854;
...
|
|
MATHEMATICA
|
t[0, 0] = 1; t[n_, k_] := Binomial[n, k]*k!*Sum[(-1)^j/j!, {j, 0, k}]; Flatten[ Table[ t[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Nov 04 2004 *)
|
|
PROG
|
(Haskell)
a098825 n k = a098825_tabl !! n !! k
a098825_row n = a098825_tabl !! n
a098825_tabl = map (zipWith (*) a000166_list) a007318_tabl
-- Reinhard Zumkeller, Dec 16 2013
|
|
CROSSREFS
|
Cf. A000166, A007318, A008290.
T(2n,n) gives A281262.
Sequence in context: A194741 A194753 A323908 * A111460 A035327 A004444
Adjacent sequences: A098822 A098823 A098824 * A098826 A098827 A098828
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Gerald P. Del Fiacco, Nov 02 2004
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Nov 04 2004
|
|
STATUS
|
approved
|
|
|
|