The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035327 Write n in binary, interchange 0's and 1's, convert back to decimal. 74
 1, 0, 1, 0, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS For n>0: largest m<=n such that no carry occurs when adding m to n in binary arithmetic: A003817(n+1) = a(n) + n = a(n) XOR n. - Reinhard Zumkeller, Nov 14 2009 a(0) could be considered to be 0 (it was set so from 2004 to 2008) if the binary representation of zero was chosen to be the empty string. - Jason Kimberley, Sep 19 2011 For n > 0: A240857(n,a(n)) = 0. - Reinhard Zumkeller, Apr 14 2014 This is a base-2 analog of A048379. Another variant, without converting back to decimal, is given in A256078. - M. F. Hasler, Mar 22 2015 For n >= 2, a(n) is the least nonnegative k that must be added to n+1 to make a power of 2. Hence in a single-elimination tennis tournament with n entrants, a(n-1) is the number of players given a bye in round one, so that the number of players remaining at the start of round two is a power of 2. For example, if 39 players register, a(38)=25 players receive a round-one bye leaving 14 to play, so that round two will have 25+(14/2)=32 players. - Mathew Englander, Jan 20 2024 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29. Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003. Ralf Stephan, Some divide-and-conquer sequences ... Ralf Stephan, Table of generating functions Index entries for sequences related to binary expansion of n Index entries for sequences related to the Josephus Problem FORMULA a(n) = 2^k - n - 1, where 2^(k-1) <= n < 2^k. a(n+1) = (a(n)+n) mod (n+1); a(0) = 1. - Reinhard Zumkeller, Jul 22 2002 G.f.: 1 + 1/(1-x)*Sum_{k>=0} 2^k*x^2^(k+1)/(1+x^2^k)). - Ralf Stephan, May 06 2003 a(0) = 0, a(2n+1) = 2*a(n), a(2n) = 2*a(n) + 1. - Philippe Deléham, Feb 29 2004 a(n) = number of positive integers k < n such that n XOR k > n. a(n) = n - A006257(n). - Paul D. Hanna, Jan 21 2006 a(n) = 2^{1+floor(log[2](n))}-n-1 for n>=1; a(0)=1. - Emeric Deutsch, Oct 19 2008 a(n) = if n<2 then 1 - n else 2*a(floor(n/2)) + 1 - n mod 2. - Reinhard Zumkeller, Jan 20 2010 a(n) = abs(2*A053644(n) - n - 1). - Mathew Englander, Jan 22 2024 EXAMPLE 8 = 1000 -> 0111 = 111 = 7. MAPLE seq(2^(1 + ilog2(max(n, 1))) - 1 - n, n = 0..81); # Emeric Deutsch, Oct 19 2008 A035327 := n -> `if`(n=0, 1, Bits:-Nand(n, n)): seq(A035327(n), n=0..81); # Peter Luschny, Sep 23 2019 MATHEMATICA Table[BaseForm[FromDigits[(IntegerDigits[i, 2]/.{0->1, 1->0}), 2], 10], {i, 0, 90}] Table[BitXor[n, 2^IntegerPart[Log[2, n] + 1] - 1], {n, 100}] (* Alonso del Arte, Jan 14 2006 *) Join[{1}, Table[2^BitLength[n]-n-1, {n, 100}]] (* Paolo Xausa, Oct 13 2023 *) PROG (PARI) a(n)=sum(k=1, n, if(bitxor(n, k)>n, 1, 0)) \\ Paul D. Hanna, Jan 21 2006 (PARI) a(n) = bitxor(n, 2^(1+logint(max(n, 1), 2))-1) \\ Rémy Sigrist, Jan 04 2019 (PARI) a(n)=if(n, bitneg(n, exponent(n)+1), 1) \\ Charles R Greathouse IV, Apr 13 2020 (Magma) A035327:=func; // Jason Kimberley, Sep 19 2011 (Haskell) a035327 n = if n <= 1 then 1 - n else 2 * a035327 n' + 1 - b where (n', b) = divMod n 2 -- Reinhard Zumkeller, Feb 21 2014 (Python) def a(n): return int(''.join('1' if i == '0' else '0' for i in bin(n)[2:]), 2) # Indranil Ghosh, Apr 29 2017 (Python) def a(n): return 1 if n == 0 else n^((1 << n.bit_length()) - 1) print([a(n) for n in range(100)]) # Michael S. Branicky, Sep 28 2021 (Python) def A035327(n): return (~n)^(-1<0. Cf. A080079, A087734, A167831, A167877, A007088, A061601, A171960, A010078, A000225, A006257 (Josephus problem). Cf. A240857. Cf. A048379, A256078. Sequence in context: A323908 A098825 A111460 * A004444 A204533 A357079 Adjacent sequences: A035324 A035325 A035326 * A035328 A035329 A035330 KEYWORD nonn,easy,base,look AUTHOR N. J. A. Sloane EXTENSIONS More terms from Vit Planocka (planocka(AT)mistral.cz), Feb 01 2003 a(0) corrected by Paolo P. Lava, Oct 22 2007 Definition completed by M. F. Hasler, Mar 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)