

A035329


a(n) = n*(2*n+5)*(2*n+7).


0



0, 63, 198, 429, 780, 1275, 1938, 2793, 3864, 5175, 6750, 8613, 10788, 13299, 16170, 19425, 23088, 27183, 31734, 36765, 42300, 48363, 54978, 62169, 69960, 78375, 87438, 97173, 107604, 118755, 130650, 143313, 156768, 171039, 186150, 202125, 218988, 236763
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


REFERENCES

Eric Harold Neville, Jacobian Elliptic Functions, 2nd ed., p. 38.


LINKS

Table of n, a(n) for n=0..37.
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).


FORMULA

From Wesley Ivan Hurt, Oct 05 2020: (Start)
a(n) = 4*n^3 + 24*n^2 + 35*n.
a(n) = 4*a(n1)  6*a(n2) + 4*a(n3)  a(n4).
G.f.: 3*x*(2118*x+5*x^2)/(1x)^4. (End)


MATHEMATICA

Table[n*(2*n + 5)*(2*n + 7), {n, 0, 60}] (* Wesley Ivan Hurt, Oct 05 2020 *)


PROG

(MAGMA) [n*(2*n+5)*(2*n+7) : n in [0..60]]; // Wesley Ivan Hurt, Oct 05 2020


CROSSREFS

Sequence in context: A156527 A199850 A055811 * A097973 A038644 A083079
Adjacent sequences: A035326 A035327 A035328 * A035330 A035331 A035332


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Sean A. Irvine, Oct 05 2020


STATUS

approved



