OFFSET
6,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 6..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
From G. C. Greubel, Jan 23 2020: (Start)
a(n) = n*(1584 - 310*n - 85*n^2 + 10*n^3 + n^4)/120 for n > 6, with a(6) = 1.
G.f.: x^6*(1 + 57*x - 171*x^2 + 205*x^3 - 125*x^4 + 39*x^5 - 5*x^6)/(1-x)^6.
E.g.f.: (-1)*x*(7200 +4320*x +720*x^2 -120*x^3 -54*x^4 +5*x^5 - (7200 -2880*x + 120*x^3 + 6*x^4)*exp(x))/720. (End)
MAPLE
seq( `if`(n=6, 1, n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120), n=6..30); # G. C. Greubel, Jan 23 2020
MATHEMATICA
Table[If[n==6, 1, n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120], {n, 6, 30}] (* G. C. Greubel, Jan 23 2020 *)
PROG
(PARI) vector(25, n, my(m=n+5); if(m==6, 1, m*(1584 -310*m -85*m^2 +10*m^3 +m^4)/120) ) \\ G. C. Greubel, Jan 23 2020
(Magma) [1] cat [n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120: n in [7.30]]; // G. C. Greubel, Jan 23 2020
(Sage) [1]+[n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120 for n in (7..30)] # G. C. Greubel, Jan 23 2020
(GAP) Concatenation([1], List([7..30], n-> n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120 )); # G. C. Greubel, Jan 23 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved