|
|
A143033
|
|
A sequence of asymptotic density zeta(7) - 1, where zeta is the Riemann zeta function.
|
|
10
|
|
|
63, 191, 319, 447, 575, 703, 831, 959, 1087, 1215, 1343, 1454, 1471, 1599, 1727, 1855, 1983, 2111, 2239, 2367, 2495, 2623, 2751, 2879, 2912, 3007, 3135, 3263, 3391, 3519, 3647, 3775, 3903, 4031, 4159, 4287, 4415, 4543, 4671, 4799, 4927, 5055, 5183, 5311
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Made up of a collection of mutually exclusive residue classes modulo multiples of factorials. A set of such sequences with entries for each zeta(k) - 1 partitions the integers. See the linked paper for their construction.
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
William J. Keith, Sequences of Density zeta(K) - 1, INTEGERS, Vol. 10 (2010), Article #A19, pp. 233-241. Also arXiv preprint, arXiv:0905.3765 [math.NT], 2009 and author's copy.
|
|
MATHEMATICA
|
f[n_] := Module[{k = n - 1, m = 2, r}, While[{k, r} = QuotientRemainder[k, m]; r != 0, m++]; IntegerExponent[k + 1, m] + 2]; Select[Range[5300], f[#] == 7 &] (* Amiram Eldar, Feb 15 2021 after Kevin Ryde at A161189 *)
|
|
CROSSREFS
|
Cf. A143028, A143029, A143030, A143031, A143032, A143034, A143035, A143036, A161189, A339013.
Sequence in context: A008874 A045112 A255568 * A156527 A199850 A055811
Adjacent sequences: A143030 A143031 A143032 * A143034 A143035 A143036
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
William J. Keith, Jul 18 2008
|
|
STATUS
|
approved
|
|
|
|