login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055817
a(n) = T(2n+5,n), array T as in A055807.
7
1, 63, 448, 2816, 16896, 99200, 575872, 3322112, 19096064, 109541824, 627653440, 3594256896, 20577979392, 117814911744, 674630384384, 3864033226240, 22138650598400, 126885674577728, 727501822004416, 4172725286118656
OFFSET
0,2
LINKS
FORMULA
a(n) = (n+5)*hypergeom([-n-4, n], [2], -1) = Sum_{s=1..n+5} binomial(n+5,s) * binomial(s+n-2,n-1) for n >= 1. - Petros Hadjicostas, Feb 13 2021
MAPLE
T:= proc(i, j) option remember;
if j=0 then 1
elif i=0 then 0
else add(add(T(h, m), m=0..j), h=0..i-1)
fi; end:
seq(T(n+5, n), n=0..20); # G. C. Greubel, Jan 23 2020
MATHEMATICA
T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h, 0, i-1}, {m, 0, j}]]]; Table[T[n+5, n], {n, 0, 20}] (* G. C. Greubel, Jan 23 2020 *)
PROG
(Sage)
@CachedFunction
def T(i, j):
if (j==0): return 1
elif (i==0): return 0
else: return sum(sum(T(h, m) for m in (0..j)) for h in (0..i-1))
[T(n+5, n) for n in (0..20)] # G. C. Greubel, Jan 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved