The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055809 a(n) = T(n,n-4), array T as in A055807. 9
 1, 15, 32, 56, 88, 129, 180, 242, 316, 403, 504, 620, 752, 901, 1068, 1254, 1460, 1687, 1936, 2208, 2504, 2825, 3172, 3546, 3948, 4379, 4840, 5332, 5856, 6413, 7004, 7630, 8292, 8991, 9728, 10504, 11320, 12177, 13076 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS If Y_i (i=1,2,3,4) are 2-blocks of an n-set X then, for n>=8, a(n-2) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Nov 09 2007 LINKS G. C. Greubel, Table of n, a(n) for n = 4..1000 Milan Janjic, Two Enumerative Functions Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA For n>4, a(n) = n*(n^2 + 3*n - 22)/6. G.f.: x^4*(1 + 11*x - 22*x^2 + 14*x^3 - 3*x^4)/(1-x)^4. - Colin Barker, Feb 22 2012 E.g.f.: x*(72 +48*x +8*x^2 -3*x^2 + (-72 +24*x +4*x^2)*exp(x))/24. - G. C. Greubel, Jan 23 2020 MAPLE seq( `if`(n=4, 1, n*(n^2 +3*n -22)/6), n=4..50); # G. C. Greubel, Jan 23 2020 MATHEMATICA f[n_]:=Sum[i+i^2-8, {i, 1, n}]/2; Table[f[n], {n, 5, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *) Table[If[n==4, 1, n*(n^2 +3*n -22)/6], {n, 4, 50}] (* G. C. Greubel, Jan 23 2020 *) PROG (PARI) Vec(x^4*(1 + 11*x - 22*x^2 + 14*x^3 - 3*x^4)/(1-x)^4 + O(x^50)) \\ Michel Marcus, Jan 10 2015 (PARI) vector(50, n, my(m=n+3); if(m==4, 1, m*(m^2 +3*m -22)/6)) \\ G. C. Greubel, Jan 23 2020 (MAGMA) [1] cat [n*(n^2 +3*n -22)/6: n in [5..50]]; // G. C. Greubel, Jan 23 2020 (Sage) [1]+[n*(n^2 +3*n -22)/6 for n in (5..50)] # G. C. Greubel, Jan 23 2020 (GAP) Concatenation([1], List([5..50], n-> n*(n^2 +3*n -22)/6 )); # G. C. Greubel, Jan 23 2020 CROSSREFS Cf. A055807, A055810, A055811, A055815, A055816, A055817. Sequence in context: A146889 A061047 A098848 * A112147 A007256 A199743 Adjacent sequences:  A055806 A055807 A055808 * A055810 A055811 A055812 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 02:39 EDT 2020. Contains 333392 sequences. (Running on oeis4.)