login
A199743
Rounded near-integers (exp(Pi*sqrt(h)) - 744)^(1/3) where h is A003173(n+3) (Heegner numbers of the form 4p-1 where p is prime).
3
15, 32, 96, 960, 5280, 640320
OFFSET
1,1
FORMULA
a(n) = (-j((1 + i*sqrt(h(n))) / 2))^(1/3) where h(n) = A003173(n+3) and j(x) is the j-invariant. - Andrey Zabolotskiy, Sep 30 2021
EXAMPLE
a(1) = 15 because 15^3 + 744 ~ exp(Pi*sqrt(7)).
a(2) = 32 because 32^3 + 744 ~ exp(Pi*sqrt(11)).
a(3) = 96 because 96^3 + 744 ~ exp(Pi*sqrt(19)).
a(4) = 960 because 960^3 + 744 ~ exp(Pi*sqrt(43)).
a(5) = 5280 because 5280^3 + 744 ~ exp(Pi*sqrt(67)).
a(6) = 640320 because 640320^3 + 744 ~ exp(Pi*sqrt(163)).
CROSSREFS
A267195 is a supersequence (negated).
Sequence in context: A055809 A112147 A007256 * A331551 A180815 A336625
KEYWORD
nonn,fini,full
AUTHOR
Artur Jasinski, Nov 09 2011
STATUS
approved