|
|
A199744
|
|
G.f.: 1/(1 + x + 2*x^2 + 2*x^3 + x^4).
|
|
4
|
|
|
1, -1, -1, 1, 2, -1, -4, 1, 7, 0, -12, -3, 20, 10, -32, -25, 49, 55, -71, -112, 95, 216, -111, -399, 94, 710, 11, -1220, -316, 2024, 1037, -3233, -2573, 4941, 5634, -7137, -11440, 9505, 22015, -11008, -40592, 9073, 72112, 1934, -123712, -33453, 204897, 107499, -326675, -264664, 498119, 577060
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
Table of n, a(n) for n=0..51.
Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See J_n.
Index entries for linear recurrences with constant coefficients, signature (-1,-2,-2,-1).
|
|
FORMULA
|
a(n) = - a(n-1) - 2*a(n-2) - 2*a(n-3) - a(n-4), n > 3. - Iain Fox, Dec 25 2017
|
|
MATHEMATICA
|
CoefficientList[Series[1/(1+x+2x^2+2x^3+x^4), {x, 0, 60}], x] (* or *) LinearRecurrence[ {-1, -2, -2, -1}, {1, -1, -1, 1}, 60] (* Harvey P. Dale, Nov 19 2020 *)
|
|
PROG
|
(PARI) first(n) = Vec(1/(1 + x + 2*x^2 + 2*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 25 2017
|
|
CROSSREFS
|
Sequence in context: A108952 A088522 A252751 * A360870 A115124 A115122
Adjacent sequences: A199741 A199742 A199743 * A199745 A199746 A199747
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
N. J. A. Sloane, Nov 09 2011
|
|
STATUS
|
approved
|
|
|
|