login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199744
G.f.: 1/(1 + x + 2*x^2 + 2*x^3 + x^4).
4
1, -1, -1, 1, 2, -1, -4, 1, 7, 0, -12, -3, 20, 10, -32, -25, 49, 55, -71, -112, 95, 216, -111, -399, 94, 710, 11, -1220, -316, 2024, 1037, -3233, -2573, 4941, 5634, -7137, -11440, 9505, 22015, -11008, -40592, 9073, 72112, 1934, -123712, -33453, 204897, 107499, -326675, -264664, 498119, 577060
OFFSET
0,5
LINKS
Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See J_n.
FORMULA
a(n) = - a(n-1) - 2*a(n-2) - 2*a(n-3) - a(n-4), n > 3. - Iain Fox, Dec 25 2017
MATHEMATICA
CoefficientList[Series[1/(1+x+2x^2+2x^3+x^4), {x, 0, 60}], x] (* or *) LinearRecurrence[ {-1, -2, -2, -1}, {1, -1, -1, 1}, 60] (* Harvey P. Dale, Nov 19 2020 *)
PROG
(PARI) first(n) = Vec(1/(1 + x + 2*x^2 + 2*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 25 2017
CROSSREFS
Sequence in context: A108952 A088522 A252751 * A360870 A115124 A115122
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 09 2011
STATUS
approved