login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199746
E.g.f.: 1/(1 + Sum_{n>=1} (-1)^n*x^(n*(3*n-1)/2)/(n*(3*n-1)/2)! + (-1)^n*x^(n*(3*n+1)/2)/(n*(3*n+1)/2)! ).
0
1, 1, 3, 12, 66, 449, 3678, 35111, 383192, 4704300, 64172052, 962908056, 15762088585, 279514500434, 5338014558032, 109224066408835, 2383887010044728, 55281768382909480, 1357381019671809552, 35180557115610914376, 959798458208463538416, 27494554196938752676656
OFFSET
0,3
FORMULA
a(n) is odd iff n is a generalized pentagonal number (A001318).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 66*x^4/4! + 449*x^5/5! + 3678*x^6/6! +...
where the reciprocal involves generalized pentagonal factorials:
A(x) = 1/(1 - x - x^2/2! + x^5/5! + x^7/7! - x^12/12! - x^15/15! + x^22/22! + x^26/26! - x^35/35! - x^40/40! +...).
PROG
(PARI) {a(n)=n!*polcoeff(1/(1+sum(m=1, n, (-1)^m*x^(m*(3*m-1)/2)/(m*(3*m-1)/2)!+(-1)^m*x^(m*(3*m+1)/2)/(m*(3*m+1)/2)! +x*O(x^n))), n)}
CROSSREFS
Cf. A001318.
Sequence in context: A214565 A267323 A058790 * A293302 A248871 A080599
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 09 2011
STATUS
approved