login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331551
Expansion of (1 + 3*x)/(1 + 2*x + 9*x^2)^(3/2).
2
1, 0, -15, 32, 105, -576, 105, 5760, -13167, -30400, 194337, -104160, -1685255, 4497024, 7011225, -57705984, 51497505, 445080960, -1402731183, -1348950240, 16032154761, -20039110080, -110074987575, 412984420992, 190753103025
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-3)^(n-k) * (n+k+1) * binomial(n,k) * binomial(n+k,k).
a(n) = Sum_{k=0..n} (-2)^k * (k+1) * binomial(n+1,k+1)^2.
a(n) = (n + 1)^2*hypergeom([-n, -n], [2], -2). - Peter Luschny, Jan 20 2020
n * (2*n-1) * a(n) = 4 * (-n^2 + 1) * a(n-1) - 9 * n * (2*n+1) * a(n-2) for n>1. - Seiichi Manyama, Jan 25 2020
MAPLE
a := n -> (n + 1)^2*hypergeom([-n, -n], [2], -2):
seq(simplify(a(n)), n=0..19); # Peter Luschny, Jan 20 2020
MATHEMATICA
a[n_] := Sum[(-2)^k * (k + 1) * Binomial[n + 1, k + 1]^2, {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Jan 20 2020 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec((1+3*x)/(1+2*x+9*x^2)^(3/2))
(PARI) {a(n) = sum(k=0, n, (-3)^(n-k)*(n+k+1)*binomial(n, k)*binomial(n+k, k))}
(PARI) {a(n) = sum(k=0, n, (-2)^k*(k+1)*binomial(n+1, k+1)^2)}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1 + 3*x)/(1 + 2*x + 9*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
CROSSREFS
Column 0 of A331511.
Sequence in context: A112147 A007256 A199743 * A180815 A336625 A177204
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 20 2020
STATUS
approved