login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331548
15-adic integer x = ...2AA66B44A40E43797853AD13 satisfying x^5 = x; also x^3 = -x; (x^2)^3 = x^2 = A331550; (x^4)^2 = x^4 = A331549.
4
3, 1, 13, 10, 3, 5, 8, 7, 9, 7, 3, 4, 14, 0, 4, 10, 4, 4, 11, 6, 6, 10, 10, 2, 8, 1, 9, 9, 0, 4, 8, 3, 10, 11, 5, 9, 11, 0, 8, 0, 10, 9, 2, 6, 0, 8, 11, 5, 8, 5, 7, 1, 6, 10, 5, 12, 14, 0, 0, 6, 10, 6, 12, 8, 2, 12, 4, 6, 1, 6, 14, 6, 7, 8, 13, 5, 5, 3, 4, 3, 0
OFFSET
0,1
COMMENTS
The base-15 version of A120817. A, B, C, D, and E are the standard notations for the hexadecimal digits 10, 11, 12, 13, and 14, respectively.
Conjecture: If k is the number of prime factors congruent to 1 (mod 4) of an integer n, then there are exactly k n-adic integers x satisfying x^5 = x, while not satisfying x^h = x for h = 2, 3, or 4. This does not count -x, which also satisfies, in each case. - Patrick A. Thomas, Mar 31 2020
FORMULA
x = 15-adic lim_{n->infinity} 3^(5^n).
EXAMPLE
x equals the limit of the (n+1) trailing digits of 3^(5^n):
3^(5^0) = (3), 3^(5^1) = 1(13), 3^(5^2) = 1708EB01(D13), ...
x = ...2AA66B44A40E43797853AD13.
x^2 = ...65762C0520697E8CA1A31469 = A331550.
x^3 = ...C44883AA4AE0AB75769B41DC = -x.
x^4 = ...8978C2E9CE8570624D4BDA86 = A331549.
x^5 = ...2AA66B44A40E43797853AD13 = x.
PROG
(PARI) \\ after Paul D. Hanna's program in A120817
{a(n)=local(b=3, v=[]); for(k=1, n+1, b=b^5%15^k; v=concat(v, (15*b\15^k))); v[n+1]}
for(k=0, 80, print1(a(k), ", ")) \\ Hugo Pfoertner, Jan 26 2020
(PARI) (A331548_vec(n)=Vecrev(digits(lift(Mod(3, 15^n)^5^(n-1)), 15)))(99) \\ M. F. Hasler, Jan 26 2020
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Patrick A. Thomas, Jan 20 2020
STATUS
approved