OFFSET
0,1
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..9999 (terms 0..999 from Paul D. Hanna)
Patrick A. Thomas, Solutions to x^5=x up to base 100
FORMULA
x = 10-adic limit_{n->infinity} 2^(5^n).
EXAMPLE
x equals the limit of the (n+1) trailing digits of 2^(5^n):
2^(5^0)=(2), 2^(5^1)=(32), 2^(5^2)=33554(432),
2^(5^3)=4253529586511730793292182592897102(6432), ...
x=...93839649523223304553032451441224165530407839804103263499879186432.
x^2=...0557423423230896109004106619977392256259918212890624 (A091664).
x^3=...6695446967548558775834469592160195896736500120813568 (A120818).
x^4=...9442576576769103890995893380022607743740081787109376 (A018248).
x^5=...3304553032451441224165530407839804103263499879186432 = x.
PROG
(PARI) {a(n)=local(b=2, v=[]); for(k=1, n+1, b=b^5%10^k; v=concat(v, (10*b\10^k))); v[n+1]}
(PARI) {a(n)=if(n<0, 0, lift(chinese(Mod(truncate( teichmuller(2+O(5^(n+1)))), 5^(n+1)), Mod(0, 2^(n+1))))\10^n)} /* Michael Somos, Oct 03 2006 */
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Paul D. Hanna, Jul 06 2006
STATUS
approved