login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290373
10-adic integer x = ...2943 satisfying x^5 = x.
11
3, 4, 9, 2, 2, 9, 7, 0, 9, 1, 8, 5, 6, 7, 4, 0, 4, 6, 3, 0, 8, 2, 8, 1, 2, 7, 9, 2, 6, 3, 0, 3, 8, 6, 6, 6, 2, 6, 6, 7, 1, 3, 4, 4, 5, 3, 2, 0, 8, 3, 1, 6, 7, 7, 5, 6, 6, 6, 8, 4, 9, 7, 5, 6, 9, 8, 0, 7, 9, 0, 3, 0, 4, 3, 8, 9, 9, 2, 7, 9, 5, 3, 3, 7, 0, 6, 4, 8
OFFSET
0,1
COMMENTS
Also x^2 = A091661.
LINKS
FORMULA
p = A120818 = ...813568, q = A018247 = ...890625, x = p - q = ...922943.
EXAMPLE
3^5 - 3 == 0 mod 10,
43^5 - 43 == 0 mod 10^2,
943^5 - 943 == 0 mod 10^3,
2943^5 - 2943 == 0 mod 10^4.
From Seiichi Manyama, Aug 01 2019: (Start)
8^(5^0) - 5^(2^0) == 3 mod 10,
8^(5^1) - 5^(2^1) == 43 mod 10^2,
8^(5^2) - 5^(2^2) == 943 mod 10^3,
8^(5^3) - 5^(2^3) == 2943 mod 10^4. (End)
PROG
(Ruby)
def P(n)
s1, s2 = 2, 8
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k1, k2 = j * m + s1, (9 - j) * m + s2
if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
s1, s2 = k1, k2
break
end
}
}
s2
end
def Q(s, n)
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k = j * m + s
if (k ** 2 - k) % (m * 10) == 0
s = k
break
end
}
}
s
end
def A290373(n)
str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse
(0..n).map{|i| str[i].to_i}
end
p A290373(100)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Jul 28 2017
STATUS
approved