OFFSET
0,1
COMMENTS
Also x^2 = A091661.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..9999
EXAMPLE
3^5 - 3 == 0 mod 10,
43^5 - 43 == 0 mod 10^2,
943^5 - 943 == 0 mod 10^3,
2943^5 - 2943 == 0 mod 10^4.
From Seiichi Manyama, Aug 01 2019: (Start)
8^(5^0) - 5^(2^0) == 3 mod 10,
8^(5^1) - 5^(2^1) == 43 mod 10^2,
8^(5^2) - 5^(2^2) == 943 mod 10^3,
8^(5^3) - 5^(2^3) == 2943 mod 10^4. (End)
PROG
(Ruby)
def P(n)
s1, s2 = 2, 8
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k1, k2 = j * m + s1, (9 - j) * m + s2
if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
s1, s2 = k1, k2
break
end
}
}
s2
end
def Q(s, n)
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k = j * m + s
if (k ** 2 - k) % (m * 10) == 0
s = k
break
end
}
}
s
end
def A290373(n)
str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse
(0..n).map{|i| str[i].to_i}
end
p A290373(100)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Jul 28 2017
STATUS
approved