login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

10-adic integer x = ...2943 satisfying x^5 = x.
11

%I #29 Aug 01 2019 18:27:35

%S 3,4,9,2,2,9,7,0,9,1,8,5,6,7,4,0,4,6,3,0,8,2,8,1,2,7,9,2,6,3,0,3,8,6,

%T 6,6,2,6,6,7,1,3,4,4,5,3,2,0,8,3,1,6,7,7,5,6,6,6,8,4,9,7,5,6,9,8,0,7,

%U 9,0,3,0,4,3,8,9,9,2,7,9,5,3,3,7,0,6,4,8

%N 10-adic integer x = ...2943 satisfying x^5 = x.

%C Also x^2 = A091661.

%H Seiichi Manyama, <a href="/A290373/b290373.txt">Table of n, a(n) for n = 0..9999</a>

%F p = A120818 = ...813568, q = A018247 = ...890625, x = p - q = ...922943.

%e 3^5 - 3 == 0 mod 10,

%e 43^5 - 43 == 0 mod 10^2,

%e 943^5 - 943 == 0 mod 10^3,

%e 2943^5 - 2943 == 0 mod 10^4.

%e From _Seiichi Manyama_, Aug 01 2019: (Start)

%e 8^(5^0) - 5^(2^0) == 3 mod 10,

%e 8^(5^1) - 5^(2^1) == 43 mod 10^2,

%e 8^(5^2) - 5^(2^2) == 943 mod 10^3,

%e 8^(5^3) - 5^(2^3) == 2943 mod 10^4. (End)

%o (Ruby)

%o def P(n)

%o s1, s2 = 2, 8

%o n.times{|i|

%o m = 10 ** (i + 1)

%o (0..9).each{|j|

%o k1, k2 = j * m + s1, (9 - j) * m + s2

%o if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0

%o s1, s2 = k1, k2

%o break

%o end

%o }

%o }

%o s2

%o end

%o def Q(s, n)

%o n.times{|i|

%o m = 10 ** (i + 1)

%o (0..9).each{|j|

%o k = j * m + s

%o if (k ** 2 - k) % (m * 10) == 0

%o s = k

%o break

%o end

%o }

%o }

%o s

%o end

%o def A290373(n)

%o str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse

%o (0..n).map{|i| str[i].to_i}

%o end

%o p A290373(100)

%Y Cf. A120817, A120818, A290372, A290374, A290375.

%Y Cf. A091661, A120818.

%K nonn,base

%O 0,1

%A _Seiichi Manyama_, Jul 28 2017