login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290371
Integers k such that f(k) - f(k-1) equals 1, where f(n) = floor(n/exp(sqrt(log(n)))).
0
3, 9, 16, 24, 33, 42, 51, 61, 71, 82, 93, 104, 115, 127, 139, 151, 163, 175, 188, 200, 213, 226, 239, 253, 266, 279, 293, 307, 321, 335, 349, 363, 377, 392, 406, 421, 436, 451, 465, 480, 495, 511, 526, 541, 557, 572, 588, 603, 619, 635, 650, 666, 682, 698, 714, 730
OFFSET
1,1
LINKS
J. M. De Koninck and V. Ouellet, On the n-th element of a set of positive integers, Annales Univ. Sci. Budapest Sect. Comput. 44 (2015), 153-164. See 3. on p. 162.
MATHEMATICA
f[n_]:=Floor[n/Exp[Sqrt[Log[n]]]]; Select[Range[2, 1000], f[#] - f[# - 1]==1 &] (* Indranil Ghosh, Jul 28 2017 *)
PROG
(PARI) f(n) = floor(n/exp(sqrt(log(n))));
isok(n) = f(n) - f(n-1) == 1;
(Python)
from sympy import floor, exp, sqrt, log
def f(n): return floor(n/exp(sqrt(log(n))))
print([n for n in range(2, 1001) if f(n) - f(n - 1) == 1]) # Indranil Ghosh, Jul 28 2017
CROSSREFS
Sequence in context: A338020 A020967 A253547 * A334563 A109340 A339918
KEYWORD
nonn
AUTHOR
Michel Marcus, Jul 28 2017
STATUS
approved