login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338020
a(n) is the number of circles of positive integer area with radii less than n and greater than n - 1.
1
3, 9, 16, 22, 28, 35, 40, 48, 53, 60, 66, 72, 78, 85, 91, 98, 103, 110, 117, 122, 129, 135, 141, 148, 154, 160, 167, 173, 179, 185, 192, 197, 205, 210, 217, 223, 229, 236, 242, 248, 255, 260, 267, 274, 279, 286, 292, 299, 304, 311, 318, 323, 330, 336, 343, 349, 355, 361, 367
OFFSET
1,1
COMMENTS
Conjecture: k >= 2, each triple Tr(k) = {a(k), a(k+1), a(k+2)} gives the sides of an integer-sided triangle, and {(a(k+2) - a(k)), (a(k+2) - a(k+1)), (a(k+1) - a(k))} is a degenerate integer-sided triangle.
FORMULA
a(n) = #{floor(sqrt(k/Pi)) < n: n > 0, k > 0}.
a(n) = A066643(n)-A066643(n-1). - R. J. Mathar, Jan 25 2023
PROG
(PARI) ap(n) = {my(x = 0, y = 1, ia = 1); while(y, if(n > sqrt(ia / Pi), x++; ia++, y = 0)); return(x)}
a(n) = {my(x = 0, y = 1, ia = 1); while(y, if(n > sqrt(ia / Pi), x++; ia++, y = 0)); return(x - ap(n-1))}
for(i = 1, 70, print1(a(i), ", "))
CROSSREFS
Cf. A066643 (partial sums).
Sequence in context: A359618 A214644 A184529 * A020967 A253547 A290371
KEYWORD
nonn
AUTHOR
Torlach Rush, Oct 06 2020
STATUS
approved