login
A359618
a(n) is the minimal absolute value of the determinant of a nonsingular n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with off-diagonal elements purely imaginary.
0
1, 1, 3, 9, 16, 21, 20, 17, 131, 62, 1
OFFSET
0,3
EXAMPLE
a(4) = 16:
[ 1, 2*i, 4*i, 3*i;
-2*i, 1, 2*i, 4*i;
-4*i, -2*i, 1, 2*i;
-3*i, -4*i, -2*i, 1 ]
MATHEMATICA
a={1}; For[n=1, n<=8, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[0<(t=Abs[Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]]])<mn, mn=t]]]; AppendTo[a, mn]]; a
CROSSREFS
Cf. A359614 (minimal signed), A359615 (maximal signed), A359616 (minimal permanent), A359617 (maximal permanent).
Sequence in context: A070066 A299636 A271491 * A214644 A184529 A338020
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Jan 21 2023
STATUS
approved