login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359561
a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of n, (n-1)*i, (n-2)*i, ..., 3*i, 2*i, i, where i denotes the imaginary unit.
7
1, 1, 3, 0, -256, -5000, -46656, 941192, 67108864, 2066242608, 24000000000, -1659995174464, -142657607172096, -5964309791355136, -76196618232397824, 11210083593750000000, 1180591620717411303424, 62286325600853591655680, 839390038939659468275712, -213252813410122222659258368
OFFSET
0,3
FORMULA
A359616(n) <= a(n) <= A359617(n).
EXAMPLE
a(3) = 0:
[ 3, 2*i, i;
-2*i, 3, 2*i;
-i, -2*i, 3 ]
MAPLE
A359561 := proc(n)
local T, c, r ;
if n =0 then
return 1 ;
end if;
T := Matrix(n, n) ;
T[1, 1] := n ;
for c from 2 to n do
T[1, c] := (n-c+1)*I ;
end do:
for r from 2 to n do
for c from 1 to r-1 do
T[r, c] := -T[c, r] ;
end do:
for c from r to n do
T[r, c] := T[r-1, c-1] ;
end do:
end do:
LinearAlgebra[Determinant](T) ;
simplify(%) ;
end proc:
seq(A359561(n), n=0..25) ; # R. J. Mathar, Jan 31 2023
MATHEMATICA
Join[{1}, Table[Det[ToeplitzMatrix[Join[{n}, I Reverse[Range[n-1]]]]], {n, 19}]]
PROG
(Python)
from sympy import Matrix, I
def A359561(n): return Matrix(n, n, [(n+j-i if i>j else j-i-n) if i!=j else n*I for i in range(n) for j in range(n)]).det()*(1, -I, -1, I)[n&3] # Chai Wah Wu, Jan 25 2023
CROSSREFS
Cf. A307783 (symmetric Toeplitz matrix).
Cf. A359559, A359560, A359562 (permanent).
Cf. A359616 (minimal), A359617 (maximal).
Sequence in context: A372314 A266380 A076951 * A060282 A060283 A255851
KEYWORD
sign
AUTHOR
Stefano Spezia, Jan 06 2023
STATUS
approved